This lab gives practice at constructing DFAs.

1. Design a DFA that accepts all strings over the alphabet $\{\$, \phi, 0,1,2,3,4,5,6,7,8,9,$.$\} that correspond$ to valid currency amounts. A valid string is either a dollar sign followed by a number which has no leading 0 's, and may have a decimal point in which case it must be followed by exactly two decimal digits, OR a one or two-digit amount followed by the cent sign Φ. The only exceptions to this rule are amounts involving 0 dollars. The following forms are all acceptable: $\$ 0,0 \mathrm{c}$, and $\$ 0 . a b$ where a and b are numerals 0 to 9 . Thus, $\$ 432.63, \$ 1, \$ 0.29,47 \Phi, 2 \phi$ are all accepted, but \$021, \$4.3, \$8.63\$, \$0.0 are not accepted.
2. Design the following DFAs assuming that the alphabet is $\{0,1\}$.
(a) A DFA for $\{w||w|$ is odd $\}$.
(b) A DFA for $\left\{w \mid\right.$ every prefix x of w has $\left.\left|\#_{0}(x)-\#_{1}(x)\right| \leq 2\right\}$. Here, $\#_{0}(y)$ and $\#_{1}(y)$ are the number of 0's and 1's respectively in the string y.
(c) A DFA $M=\left(Q, \Sigma, \delta, q_{0}, F\right)$ for the intersection of the previous two languages. Specify each element of the tuple precisely. Do not draw any pictures. Label the states reasonably.
3. To think at home: Given two regular expressions r and s we write $r=s$ if $L(r)=L(s)$. Prove or disprove the following.

- $(r+s)^{*}=r^{*}+s^{*}$
- $(r s+r)^{*} r=r(s r+r)^{*}$
- $s(r s+s)^{*} r=r r^{*} s\left(r r^{*} s\right)^{*}$

