Regular Expressions & Automata
Regular Language Equivalence Thm

Languages captured by DFAs, NFAs, and regular expressions are the same.

Proof:
If \(r \) is a regular expression with \(L(r) = L \), then there is an NFA \(N_r \) that recognizes \(L \).
Prove by induction:

If r is a regular expression denoting language L, then there is an NFA with one accepting state that recognizes L

Requiring one accepting state is easy, and it simplifies the proof.

Proof is by induction. But on what??
Induction on # of operations

Base case: If r contains none of $+$, concat, $*$, then r is one of

- \emptyset: recognizes the empty set
- ε: recognizes the set $\{\varepsilon\}$
- a: recognizes the set $\{a\}$
Inductive Step

• Assume the theorem holds for all regular expressions r formed using less than n operations.
• Let r be an arbitrary regular expression formed using exactly n operations.
• Then r is one of the following:

$$ r = r_1 + r_2 \quad \text{or} \quad r = r_1 r_2 \quad \text{or} \quad r = r_1^* $$

Where r_1 and r_2 are each formed using $< n$ operations and inductively have NFAs with one accepting state.
Case $r = r_1 + r_2$

Assume that the NFAs for r_1 and r_2 have initial states q_1 and q_2 and accept states f_1 and f_2.
Case $r = r_1 r_2$

Assume that the NFAs for r_1 and r_2 have initial states q_1 and q_2 and accept states f_1 and f_2.
Case $r = r_1^*$

Assume that the NFA for r_1 has initial state q_1 and accept state f_1.
Case $r = (r_1)^*$

Assume that the NFA for r_1 has initial state q_1 and accept state f_1.

![Diagram of NFA]

- Initial state q_0 transitions to state q_1 on ε.
- State q_1 is part of an NFA N_1.
- N_1 transitions to accept state f_1 on ε.
Example construction

\[(\varepsilon+0)(1+10)^*\]
$\varepsilon 0$ $\varepsilon 0$ $\varepsilon 0$ $\varepsilon 0$

$(1+10)$ 10 1 10 1
Oh, just draw it already