Proving non-regularity
Non-regular languages

• A finite state machine is finite. It has only some number \(n \) of states.

• If a language has strings in it where the memory requirements would appear to grow with the length, then it is likely not regular.

• Canonical example: \(\{0^k1^k \mid k \geq 0\} \), seems to require counting the 0s.

• This is not a proof.
Three methods for proving nonregularity

• The pumping lemma
 – If L is regular, any sufficiently long string in L can be “pumped” to obtain new strings in L. A language failing this test cannot be regular.

• Distinguishing suffixes
 – Show that there are infinitely many strings each of which would require a different state.

• Closure properties
 – Combine L with known regular languages using regularity-preserving operations, to obtain a known non-regular language.
1. The Pumping Approach

• Consider the language $L = \{0^k1^k \mid k \geq 0\}$
• Suppose there was a DFA M with n states for L
• Look at the accepting path for 0^n1^n

By the pigeonhole principle, a state must be revisited on reading the first n 0’s.

0^n1^n is accepted...

but so is $0^{n+im}1^n$ for all i, so M is incorrect

$0^{n-m}1^n$ is also incorrectly accepted – why?
1. The Pumping Lemma

- Suppose M is a DFA of n states.
- Consider a string w in $L(M)$, with length $\geq n$
- It visits $n+1$ states, so two must be the same:

$$w = xyz \in L(M)$$

$$w = x^{i}yz \in L(M) \text{ for all } i \geq 0$$

BUT ALSO
Recap...

If L regular, then for all “sufficiently long” w in L

w can be “pumped” to obtain more strings in L:

$w = xyz$, $1 \leq |y| \leq n$, and xy^iz is also in L for all i

COROLLARY:

If for every n there is a string w in L of length at least n that “pumps” to a string not in L

... Then L CANNOT BE REGULAR
\[L = \{0^k1^k \mid k \geq 0\} \text{ is not regular} \]

(canonical non-regular language)

- Suppose there is an \(n \)-state DFA \(M \) recognizing \(L \).
- Then \(w = 0^n1^n \) is in \(L \), and en route to acceptance, there is a loop in \(M \) of size \(m \), with \(1 \leq m \leq n \).
- So \(0^{n+im}1^n \) is also accepted.
- But this string is not in \(L \) when \(i = 1 \).
- So \(M \) does not recognize \(L \).
$L = \{0^k \mid k \text{ is prime}\}$ is not regular

• Suppose there is an n-state DFA M recognizing L.
• Let p be a prime, $p > n$, so that 0^p is in L, and en route to acceptance, there is a loop in M of size m, with $1 \leq m \leq n$.
• Then for each i, 0^{p+im} is also accepted for each i.
• But is $p+im$ prime for every i?
• Not if $i = p$.
• Since M accepts $0^{p+pm} = 0^{p(1+m)}$, it doesn’t recognize L.
L = \{a^p b^q \mid p \geq q \} isn’t regular

- Suppose there is an \(n \)-state DFA \(M \) recognizing \(L \).
- Then \(a^{n+1}b^n \) in \(L \), and en route to acceptance there is a loop in \(M \) of size \(m \), with \(1 \leq m \leq n \).
- So \(a^{n+1+im}b^n \) is also accepted
- And this results in no contradiction
- So, is \(L \) regular since the string can be pumped?
- NO! Cannot show regularity by pumpability
• NO, \(L = \{a^p b^q \mid p \geq q \} \) is not regular.
• PL says all sufficiently long strings must be pumpable.
• We only need demonstrate ONE which ISN’T.
• \(a^{n+1} b^n \) was a bad choice; it could be pumped.

What would be a good choice?

Let’s try \(a^n b^n \)
$L = \{ a^p b^q \mid p \geq q \}$ is not regular

- Suppose there is an n-state DFA M recognizing L.
- Then $a^n b^n$ in L, and en route to acceptance there is a loop in M of size m, with $1 \leq m \leq n$.
- So $a^{n+im} b^n$ is also accepted.
- Since $n+im \geq n$, $a^{n+im} b^n$ is still in L for each i.
- ???
\[L = \{ a^p b^q \mid p \geq q \} \text{ is not regular} \]

- Recall that the loop can also be *eliminated* to yield a new string that is accepted.
- Suppose there is an \(n \)-state DFA \(M \) recognizing \(L \).
- Then \(a^n b^n \) in \(L \), and en route to acceptance there is a loop in \(M \) of size \(m \), with \(1 \leq m \leq n \).
- So \(a^{n-m} b^n \) is also accepted.
- Since \(n-m < n \), \(a^{n-m} b^n \) is not in \(L \).
- So \(M \) does not recognize \(L \).
Summary

To show a language not regular using P.L

- Assume there is a DFA M with n states recognizing L
- Carefully select a string w in L of length $\geq n$.
- This string forces a loop in M en route to acceptance of size m, with $1 \leq m \leq n$.
- Show that no matter what characters are on the loop, by “pumping” we can obtain a string not in L that M accepts.
- Conclude that M doesn’t recognize L after all
Class Exercise

Use the pumping lemma to show that the language $L = \{0^s \mid s \text{ is a perfect square}\}$ is not regular.
2. Distinguishing Suffixes

If L is any language, and x, y, z strings, we say that z distinguishes x from y (with respect to L) if exactly one of xz and yz is in L.
Distinguishing Suffixes

Examples

• If \(L = \{w \mid w \text{ contains an odd number of 1s and an odd number of 0s}\} \)
 – the suffix \(z = 01 \) distinguishes 00 from 100 since 0001 is in \(L \), but 10001 is not in \(L \).

• If \(L = \{0^n1^{2n} \mid n \geq 0\} \)
 – the suffix \(z = 1111 \) distinguishes 00 from 000
 – the suffix _____ distinguishes 01 from 001
 – the suffix _____ distinguishes 01 from 00111
Distinguishability

• Two strings x and y are distinguishable L if there exists a distinguishing suffix z for them.
• Otherwise, x and y are indistinguishable L
• Homework:

 indistinguishability is an equivalence relation.

• If x and y are distinguishable, then in any DFA for L, x and y must lead to different states
• Why? <one sentence proof>
Proving L Nonregular

• Describe an infinite set of strings D such that any distinct pair x and y in D are distinguishable
• (Thus, they all must go to different states – and there are infinitely many of them.)
• Example: $L = \{0^n1^n \mid n \geq 0\}$, $D = \{0^k \mid k \geq 0\}$. D is infinite. And, the suffix 1^k distinguishes 0^k from 0^j because 0^k1^k is in L but 0^j1^k is not.
• Thus, $L = \{0^n1^n \mid n \geq 0\}$ would need infinitely many states, and so is not regular.
Proving L Nonregular

• Example: $L = \{a^p b^q \mid p \geq q \}$, $D = \{a^k \mid k \geq 0\}$
 – What suffix distinguishes a^m from a^n?

• Example: $L = \{0^p 1^q \mid p \neq q \}$
 – Is $0^5 1^7$ distinguishable from $0^5 1^8$?
 – Is $0^7 1^5$ distinguishable from $0^8 1^6$?
 – What infinite set D of strings has elements that are pairwise distinguishable?
Challenge

Let \(L = \{ w \mid \#_0(w) = \#_1(w) \} \).

Find an infinite set \(D \) of pairwise-distinguishable strings.
FYI

• Indistinguishability$_L$ is an equivalence relation
• The smallest DFA for L has states that correspond to the equivalence classes
• Homework problem (may) hint at this
• See Myhill-Nerode theorem

http://en.wikipedia.org/wiki/Myhill–Nerode_theorem
3. Proving Nonregularity with Closure

Let \(L_1, L_2, \ldots, L_n \) be languages where \(L_1, L_2, \ldots, L_{n-1} \) are known regular languages, and \(L_n \) is an unknown language. Apply closure properties to these languages.

THEN: \(L_n \) must be non-regular.
\{w: \#0(w) = \#1(w)\} is not regular

• Let \(L = \{w \mid \#0(w) = \#1(w)\} \). Suppose \(L \) regular.
• Let \(L' = L \cap 0^*1^* \)
• \(L' \) is regular, since it is intersection of two regular languages.
• But \(L' = \{0^n1^n \mid n \geq 0\} \) which is NOT regular.
• Contradiction. Thus \(L \) is not regular.
Can be more complicated

• Show \(L = \{a^nba^{2n} : n \geq 0\} \) is not regular.
• Define \(h(0) = h(1) = a, h(2) = b \) and then
 \[L' = h^{-1}(L) = \{(0+1)^n2(0+1)^{2n} : n \geq 0\} \]
• Intersect this with \(0^*21^* \) gives
 \[L'' = \{0^n21^{2n} : n \geq 0\} \]
• Define \(g(0)=0, g(1) = 11, g(2) = 2 \) and then
 \[L''' = g^{-1}(L'') = \{0^n21^n : n \geq 0\} \]
• Define \(f(0)=0, f(1)=1, f(2)=\varepsilon \) and then
 \[L'''' = f(L''') = \{0^n1^n : n \geq 0\} \) which is known nonregular
Summary: three methods for proving nonregularity

• The pumping lemma
 – If L is regular, any sufficiently long string in L can be “pumped” to obtain new strings in L. A language failing this test cannot be regular.

• Distinguishing suffixes
 – Show that there are infinitely many pairwise indistinguishable states

• Closure properties
 – Combine L with known regular languages using regularity-preserving operations, to obtain a known non-regular language.
Regular Languages Summary

• Regular languages: simple base cases, then closure under union, concat, and *, and many other ops
• Regular expressions capture regular languages
• Finite state machines, (det, nondet) recognize regular languages.
• Notion of state as memory: finite
• Nonregular.... where more than finite memory is required.
• Pumping, distinguishing suffixes, closure properties to prove nonregularity.