Nondeterministic Finite Automata
A DFA is a quintuple $M=(Q,\Sigma,\delta,q_0,F)$, where:

- Q is a finite set of states
- Σ is a finite alphabet of symbols
- $\delta: Q \times \Sigma \rightarrow Q$ is a transition function
- q_0 is the initial state
- $F \subseteq Q$ is the set of accepting states
NFA: NONDETERMINISTIC FINITE AUTOMATON

State 0 has two possible actions on input 0

State 1 has NO possible actions on input 1
Let's see how a computation proceeds

What is the next state???
Two views:

(a) Possible worlds
 EITHER could be the next state.

(b) Parallel threads
 BOTH are “the next state”; the NFA spawns a second thread – it is in two states at the same time.

INPUT 000110
After reading 00, the machine could be in ANY of its states!
One of the threads has died

INPUT 000110
Formalism

- NFA is same as DFA, except transition δ returns a set of possible next states:
 - $\delta : Q \times \Sigma \rightarrow 2^Q$ so that $\delta(q,a) \subseteq Q$

- We write $q \xrightarrow{a} p$ if p is in $\delta(q,a)$

- Everything else is unchanged. But now for a string w, there may be many states p such that $q \xrightarrow{w} p$. (Exists a path labeled w leading from q to p)

N accepts w if for some f in F, $q_0 \xrightarrow{w} f$.
What strings can possibly end at state 3?

\[L(N) = \{ w \mid w \text{ ends with } "010" \text{ or with } "101" \} \]

must make sure:

(1) every string with either ending can be accepted.
(2) every string without either ending cannot possibly be accepted.
Example NFA N

What strings can *possibly* end at state n?

$L(N) = \{w : w$’s n^{th} from last character is a “1”}$

requires 2^n DFA states

must make sure:

(1) *every* string with 1 in n^{th}-from-last position *can* be accepted.
(2) *every* string with a 0 in n^{th}-from-last position *cannot* possibly be accepted.
Challenge NFA Construction

Create an NFA that recognizes the set of strings that contain your FIRST NAME.
ε-NFAs: NFAs with ε-edges

• Allow transition without reading character
• $\delta: Q \times (\Sigma \cup \{\varepsilon\}) \rightarrow 2^Q$

On empty input, which states can be reached?
On input 0, which states can be reached?
Accept decimal numbers

0, 1, 2, ..., 9

useful when an input symbol is optional
Utility of ε-edges

- nondeterministically choose between two cases
- construct NFA for case 1, NFA for case 2, then add new start state with ε-edges to choose which NFA to “run”.
- accepts the union of the languages

\[N_1 \]
\[N_2 \]
Example: accept one of several keywords

No need to think about how different keywords overlap. Can essentially have several starting states.
L(N) = \{w \mid \text{either contains both } aa \text{ and } bb, \text{ or neither} \}
\[L(N) = \{ w \mid \text{contains either both } aa \text{ and } bb, \text{ or neither} \} \]
WLOG one accepting state

- Also notice that now, without loss of generality, we may assume that every NFA has only one accepting state:
Closure under Suffixes

• Show that if L is accepted by some DFA M, then there is an NFA N that accepts $\text{suffixes}(L) = \{w \mid w \text{ is a suffix of some word in } L\}$

• Proof by constructing N from M.
Closure under Suffixes

- Let $M = (Q, \Sigma, \delta, q_0, F)$, then $N = (Q^N, \Sigma^N, \delta^N, q_0^N, F_N)$
 - $Q^N = Q \cup \{\text{start}\}$
 - $\Sigma^N = \Sigma$
 - $\delta^N = \delta(q, a)$ for q in Q; $\delta^N(\text{start}, \epsilon) = \{q \mid q \text{ reachable}\}$
 - $q_0^N = \text{start}$
 - $F_N = F$
Informal Definition of acceptance

An ε-NFA accepts a string $w = a_1a_2...a_n$ iff there is a path (perhaps including ε-edges) from state 0 to an accepting state, such that the concatenation of symbols along the path = $a_1a_2...a_n$.
Theorem

If L is recognized by some NFA N with ε-edges, then there is an equivalent NFA N' without ε-edges that recognizes L

Proof is by SIMULATION of N by an N'
Given ε-NFA $N = (Q, \Sigma, \delta, q_0, F)$

Construct NFA $N' = (Q, \Sigma, \delta', q_0, F')$:

$F' = F$ unless ε-transitions.

In which case $F' = F \cup \{q_0\}$

δ' extends δ by adding transitions to compensate for lack of ε-edges.

δ' contains all non-ε-edges of δ, but in addition:

for every p, q in Q, for every a in Σ, if there is a path

```
  p \xrightarrow{\varepsilon} a \xrightarrow{\varepsilon} q
```

in N

then add

```
  p \xrightarrow{a} q
```

to N'
Example: eliminating ε-edges

state 0 on input 0 can reach states 0,1,2,3
state 0 on input 1 can reach states 1,2,3
state 1 on input 0 can reach state 2
state 1 on input 1 can reach states 1,2,3
state 2 on input 0 can reach state 2
state 2 on input 1 can reach nothing
state 3 on input 0 can reach state 2
state 3 on input 1 can reach nothing

and NOT so $F' = F$
Proof that simulation works

• Prove that $L(N') = L(N)$
• Use the following

\textit{Lemma}

For all states p, q, and for all NONEMPTY strings w

\[p \xrightarrow{w} q \text{ in } N \text{ if and only if } p \xrightarrow{w} q \text{ in } N' \]

perhaps ε-edges

no ε-edges
DEF for M:
\[p \xrightarrow{a} q \text{ in } N' \iff \]
\[p \xrightarrow{a} q \text{ in } N \]

BY INDUCTION:
To show
\[p \xrightarrow{w} q \text{ in } N' \iff \]
\[p \xrightarrow{w} q \text{ in } N \]

apply definition

apply inductive hypothesis since \(|u| < |w|\)

p
\[\xrightarrow{a} \]

r

\[\xrightarrow{w} \]

u

q

p
\[\xrightarrow{a} \]

r

\[\xrightarrow{w} \]

u

q

p
\[\xrightarrow{w} \]

q

ENTIRE ARGUMENT WAS IFF

generate the computations back together
Since lemma is true....

Show for every w: N' accepts w if and only if N accepts w

If NOT $q_0 \xrightarrow{\varepsilon} f$ in F then $F' = F$ and:

- Neither N nor N' accept ε
- If $|w| > 0$. By Lemma, w goes to same states in N' as it did in N, and since $F' = F$, it is accepted by N' iff it was accepted by N
Since lemma is true....

If \(q_0 \xrightarrow{\varepsilon} f \) in \(F \) then \(F' = F \cup \{q_0\} \)

- Case 1: \(w=\varepsilon \), so is accepted by both \(N \) and \(N' \)
- Case 2: \(|w| > 0 \), then
 - Case 2a: NOT \(q_0 \xrightarrow{w} q_0 \) in \(N \).

By Lemma, \(w \) doesn’t reach \(q_0 \) in \(N' \) either
So adding \(q_0 \) to \(F' \) didn’t change \(w \)'s acceptance
Since lemma is true....

If \(q_0 \overset{\varepsilon}{\rightarrow} f \) in \(F \) then \(F' = F \cup \{q_0\} \)

- Case 1: \(w=\varepsilon \), so is accepted by both \(N \) and \(N' \)
- Case 2: \(|w| > 0 \), then
 - Case 2b: \(q_0 \overset{w}{\rightarrow} q_0 \) in \(N \).

In \(N' \), \(q_0 \) was made accepting

But \(q_0 \overset{\varepsilon}{\rightarrow} f \) in \(F \) anyway

So \(w \) is accepted by both
Eliminating Nondeterminism
NFA → DFA Theorem

Theorem

If L is recognized by some NFA N, then there is an equivalent DFA that recognizes L!!

Nondeterminism doesn’t increase the computational power of finite automata

Proof is by **SIMULATION** of an NFA by a DFA

assume wlog that NFA has no ε-edges
But first....

How would you write a program to tell if a word w was accepted by some DFA M?

How is DFA represented?

DFA is table δ (2d array) $Q \times \Sigma$ with constant access time to get $\delta(q,a)$

F is boolean array indicating accept
But first....

How would you write a program to tell if a word w was accepted by some DFA M?

Alg M (δ: array; w: string)

state = 0

for $i = 1$ to $|w|$

state = δ(state, w_i)

output F(state)
How about NFAs?

How would you write a program to tell if a word \(w \) was accepted by some **NFA** \(N \)?

- What is representation of an NFA?
- NFA has table \(\delta \) (2d array) \(Q \times \Sigma \) where each entry is a pointer to a linked list of possible next states \(\delta(q,a) \)
- Time to collect “next states” from \(q, a \) is \(O(n) \)
Algorithms for NFA computing

ACCEPNTS \((N, w)\)
Return \(\text{ACCEPNT?}(q_0, w)\)

\text{ACCEPNT?} \((q, w)\) /* does \(w\) go to an accepting state from \(q\) */
if \(w = \varepsilon\)
return \(F(q)\)
else \(w = au,\)
return \(\text{OR} \{ \text{ACCEPNT?} \((p, u)\) \mid p \text{ in } \delta(q,a) \} \)

- Proof that this is correct? simple induction on \(|w|\)
- Time taken by this algorithm? don’t ask; don’t tell (until later)
Algorithms for NFA computing

ACCEPTS \((N,w)\)
active, new_active = sets of states implemented as boolean arrays indexed by states
active = [1,0,0,0,0,...,0] (initially, only starting state 0 is active)
for \(i = 1\) to \(|w|\)
 new_active = \(\emptyset\) (zero out the array)
 for each state \(q\) in active
 put each element of \(\delta(q,w_i)\) in new_active
 active = new_active
if active contains an accepting state, then return TRUE
else return FALSE

• Proof that this is correct? simple induction on \(|w|\)
• Time taken by this algorithm? \(O(n^2w)\)
NFA

STATES OF THE EQUIVALENT “POWER-SET” DFA
A state corresponds to a subset of states of the NFA, showing which are active threads (a boolean array)
INPUT 000110
INPUT 000110
INPUT 000110
INPUT 0001110
Formal specification

• Let \(N = (Q, \Sigma, \delta, q_0, F) \) be an NFA
• Recall that \(\delta: Q \times \Sigma \rightarrow 2^Q \), so that
 \(\delta(q, a) \) is a set of possible states.
• Build \(M = (Q', \Sigma, \delta', q'_0, F') \) that simulates \(N \):
 – \(Q' = 2^Q \) (the power set of \(Q \))
 – \(\Sigma \) is the same
 – \(q'_0 = \{q_0\} \)
 – \(F' = \{S \subseteq Q: S \cap F \neq \emptyset\} \)

 if \(N \) could have ended in an accepting state, then \(S \) will contain an element of \(F \)

since \(S \) is in \(Q' \), it is a subset of \(Q \)
Formal specification

• Let $N = (Q, \Sigma, \delta, q_0, F)$ be an NFA
• $M = (Q', \Sigma, \delta', q'_0, F')$

What is δ' ??

$\delta'(S, a) =$

$S \xrightarrow{a} R$ iff $R = \{ r : s \xrightarrow{a} r \text{ for some } s \text{ in } S \}$

$S \xrightarrow{a}$ exactly the set of states that N can reach from anything in S on input a
Intuition

Then set \(S \xrightarrow{a} R \) in \(M \).
Which are the accepting states?
Which are the accepting states?
Challenge NFA
(do at home)

Be careful – it is easy to get confused
To show

- “Action” of DFA is correct
- What would that mean?
- $\{q_0\} \xrightarrow{w} P = \{\text{states NFA could be in}\}$
 - $= \{p : q_0 \xrightarrow{w} p\}$
- But more generally, for any state S of DFA
 (set of states of NFA)
 $S \xrightarrow{w} P = \{p: \text{for some } s \text{ in } S, s \xrightarrow{w} p\}$

$S \xrightarrow{w}$ exactly the states that N could reach starting at a state in S
Intuition (w = au)
DEF for M:
\[S \xrightarrow{a} \text{exactly the states that } N \text{ can reach from } S \text{ on input } a \]

BY INDUCTION:

To show:
\[S \xrightarrow{w} \text{exactly the states that } N \text{ can reach from } S \text{ on input } w \]

To show:
\[S \xrightarrow{w} \text{exactly the states that } N \text{ can reach from } S \text{ on input } w \]

DEF for M:
\[S \xrightarrow{a} \text{exactly the states that } N \text{ can reach from } S \text{ on input } a \]

BY INDUCTION:

To show:
\[S \xrightarrow{w} \text{exactly the states that } N \text{ can reach from } S \text{ on input } w \]

So, \(p \) in \(P \) iff \(p \) can be reached via \(au \) from some \(s \) in \(S \)
Finishing up....

$S \xrightarrow{w} \text{exactly the set of states that } N \text{ can reach from } S \text{ on input } w$

$\{q_0\} \xrightarrow{w} \text{exactly the set of states that } N \text{ can reach from } q_0 \text{ on input } w$

N accepts a string w

iff in N, $q_0 \xrightarrow{w} f$ for some f in F

iff in M, $\{q_0\} \xrightarrow{w} S$ for some S containing f

iff in M, $\{q_0\} \xrightarrow{w} S$ in F' (recall $F' = \{S \subseteq Q : S \cap F \neq \emptyset\}$)

iff M accepts w
Any DFA for L_n needs $\geq 2^n$ states

Proof by contradiction

• If not, then two different n-bit strings u and v must lead to the same state of M.

$u = \ldots 0 \ldots$

\vdots

\vdots

\vdots

\vdots

\vdots

$v = \ldots 1 \ldots$

$0000\ldots 0$

added 0s

M in same state q

M in same state p

$\text{Is state } p$ accepting or not accepting?
Languages & Automata Recap

• Regular languages are recursively defined in terms of union, concatenation, and Kleene *
• Regular expression are also recursively defined, and express the regular languages
• DFAs accept all and only regular languages (to be shown later)
• NFAs (with ε-edges) are exactly as powerful as DFAs, hence accept exactly the regular languages
• Can build DFAs and NFAs for union, intersection of regular languages