Decidability
Decision Problems

- A yes/no question over many instances
 - Given grammar G, is G ambiguous?
 - Given a TM M, does $L(M) = \{0,1\}^*$?
 - Given DFAs M_1 and M_2, does $L(M_1) = L(M_2)$?
 - Given a graph G, is G connected?
 - Given a graph G, nodes s and t, and number d, is there a path from s to t of distance d or less?
Equivalently, languages:

- \{<G> \mid <G> \text{ encodes an unambiguous grammar}\}
- \{<M> \mid L(M) = \{0,1\}^* \}
- \{<M_1> \# <M_2> \mid \text{DFAs } M_1 \text{ and } M_2, \text{ accept the same language}\}
- \{<G> \mid <G> \text{ encodes a connected graph}\}
- \{<G>\#s\#t\#d \mid <G> \text{ encodes a graph with nodes } s \text{ and } t, \text{ there is a path from } s \text{ to } t \text{ of distance } d \text{ or less}\}

Deciding membership in the language is solving the decision problem.
Decidable

• A decision problem (language) is *decidable* if there is a TM that always halts that accepts the language. (The language is recursive.)
• I.e., there is an algorithm that always answers “yes” or “no” correctly.
• Note: since all finite languages are recursive, (they’re regular in fact) any decision problem with only a finite number of instances is decidable, and not well-addressed by this theory....
Example 1: decidable or not?

• Is there a substring of exactly 374 consecutive 7’s in decimal expansion of π?

• This is decidable. There is an algorithm which is correct. It is one of these:

<table>
<thead>
<tr>
<th>Alg 1</th>
<th>Alg 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Output “yes”</td>
<td>Output “no”</td>
</tr>
</tbody>
</table>

We just don’t know which one it is.
But, there is an algorithm which will tell us which it is!
Moral

• This is nonsense
• There were no “instances” of the problem.
• It simply asks a single yes/no question.
• Not even clear what “language” corresponds to it
• Remember: decidability is for problems with many possible input instances
Example 2

• Give n, is there a substring of exactly n consecutive 7’s in π?
• Language: $\{n \mid \text{decimal expansion of } \pi \text{ contains the substring } a7^n b, \text{ where } a \text{ and } b \text{ are not 7s}\}$
• Is this language decidable? Is there a halting TM for it?
• It is r.e.? (recall: a TM that may not halt but accepts if it should)
Example 3

• Give \(n \), is there a substring of at least \(n \) consecutive 7’s in \(\pi \)?

• Language: \(L = \{ n \mid \text{decimal expansion of } \pi \text{ contains the substring } 7^n \} \)

• Is this language decidable? Is there a halting TM for it?

• In fact, it is regular!

 (\(L \) is either all of \(\mathbb{N} \), or equals \(\{0,1,2,\ldots,k\} \) for some fixed \(k \).)
L_u

• Recall $L(M_u) = \{ <M> \# w \mid M \text{ accepts } w \}$
• This language is called L_u, the “universal” language
• Is L_u recursive? I.e., given a TM $<M>$ and input w, can we decide whether or not M accepts w?
• If L_u were decidable, we’d be able to tell if any program accepted any input.
L_u is r.e. - it is accepted by a TM

Proof:

M_u accepts exactly the language L_u
L_u is not decidable

Warm-up: Self-reference leads to paradox

- In a town there is a barber who shaves all and only those who do not shave themselves

 Who shaves the barber?

- Homogenous words: self-describing
 - English, short, polysyllabic

 Heterogenous words: non-self-describing
 - Spanish, long, monosyllabic

What kind of word is “heterogenous”?
L_u is not decidable

• Proof by contradiction
• Suppose there was an algorithm (TM) that always halted, as follows:

 $<M> \# w \rightarrow$

 TM accept-checker

 Check if $M(w)$ accepts

 yes, $M(w)$ accepts

 no, $M(w)$ doesn’t accept*

* remember – $M(w)$ may not halt – which is why this may be difficult

We’ll show how to use this as a subroutine to get a contradiction
L_u is not decidable

- Proof by contradiction
- Suppose there was an algorithm (TM) as follows:

 \[
 \text{TM accept-checker}
 \]

 Decides if $M(<M>)$ accepts

 $Q(<M>)$ rejects iff $M(<M>)$ accepts
 $Q(<M>)$ accepts iff $M(<M>)$ doesn’t accept
L_u is not decidable

TM Q

copy-arg $<M>$ # $<M>$

TM accept-checker
Decides if $M(<M>)$ accepts

accept
doesn’t

accept
reject

$Q(<M>)$ rejects iff $M(<M>)$ accepts
$Q(<M>)$ accepts iff $M(<M>)$ doesn’t accept

Does $Q(<Q>)$ accept or reject?

either way, a contradiction, so assumption that accept-checker existed was wrong