Backtracking and Introduction to Dynamic Programming

Lecture 11
March 5, 2015
Recursion

Reduction:
Reduce one problem to another

Recursion
A special case of reduction
1. reduce problem to a smaller instance of itself
2. self-reduction

1. Problem instance of size n is reduced to one or more instances of size $n - 1$ or less.
2. For termination, problem instances of small size are solved by some other method as base cases.
Recursion in Algorithm Design

1. **Tail Recursion**: problem reduced to a *single* recursive call after some work. Easy to convert algorithm into iterative or greedy algorithms. Examples: Interval scheduling, MST algorithms, etc.

2. **Divide and Conquer**: Problem reduced to multiple *independent* sub-problems that are solved separately. Conquer step puts together solution for bigger problem. Examples: Closest pair, deterministic median selection, quick sort.

3. **Backtracking**: Refinement of brute force search. Build solution incrementally by invoking recursion to try all possibilities for the decision in each step.

4. **Dynamic Programming**: problem reduced to multiple (typically) *dependent or overlapping* sub-problems. Use *memoization* to avoid recomputation of common solutions leading to *iterative bottom-up* algorithm.
Part I

Brute Force Search, Recursion and Backtracking
Maximum Independent Set in a Graph

Definition

Given undirected graph $G = (V, E)$ a subset of nodes $S \subseteq V$ is an independent set (also called a stable set) if for there are no edges between nodes in S. That is, if $u, v \in S$ then $(u, v) \not\in E$.

Some independent sets in graph above: $\{D\}, \{A, C\}, \{B, E, F\}$
Maximum Independent Set Problem

Input Graph $G = (V, E)$

Goal Find maximum sized independent set in G
Maximum Weight Independent Set Problem

Input: Graph $G = (V, E)$, weights $w(v) \geq 0$ for $v \in V$

Goal: Find maximum weight independent set in G
No one knows an *efficient* (polynomial time) algorithm for this problem.

Problem is **NP-Complete** and it is *believed* that there is no polynomial time algorithm.

Brute-force algorithm:

Try all subsets of vertices.
Brute-force enumeration

Algorithm to find the size of the maximum weight independent set.

MaxIndSet(G = (V, E)):
 \(\text{max} = 0 \)
 \(\text{for each subset } S \subseteq V \text{ do} \)
 check if \(S \) is an independent set
 \(\text{if } S \text{ is an independent set and } w(S) > \text{max} \text{ then} \)
 \(\text{max} = w(S) \)
 Output \(\text{max} \)

Running time: suppose \(G \) has \(n \) vertices and \(m \) edges
1. \(2^n \) subsets of \(V \)
2. checking each subset \(S \) takes \(O(m) \) time
3. total time is \(O(m^2 n) \)
Brute-force enumeration

Algorithm to find the size of the maximum weight independent set.

\[\text{MaxIndSet}(G = (V, E)) : \]
\[\quad \text{max} = 0 \]
\[\quad \text{for each subset } S \subseteq V \text{ do} \]
\[\qquad \text{check if } S \text{ is an independent set} \]
\[\quad \quad \text{if } S \text{ is an independent set and } w(S) > \text{max} \text{ then} \]
\[\qquad \quad \text{max} = w(S) \]
\[\text{Output max} \]

Running time: suppose \(G \) has \(n \) vertices and \(m \) edges

1. \(2^n \) subsets of \(V \)
2. checking each subset \(S \) takes \(O(m) \) time
3. total time is \(O(m2^n) \)
A Recursive Algorithm

Let $V = \{v_1, v_2, \ldots, v_n\}$.
For a vertex u let $N(u)$ be its neighbors.

RecursiveMIS(G):
- if G is empty then Output 0
- $a = \text{RecursiveMIS}(G - v_n)$
- $b = w(v_n) + \text{RecursiveMIS}(G - v_n - N(v_n))$
- Output $\max(a, b)$
Let $V = \{v_1, v_2, \ldots, v_n\}$.
For a vertex u let $N(u)$ be its neighbors.

Observation

v_n: Vertex in the graph.

One of the following two cases is true

- **Case 1** v_n is in some maximum independent set.
- **Case 2** v_n is in no maximum independent set.
A Recursive Algorithm

Let \(V = \{v_1, v_2, \ldots, v_n\} \).

For a vertex \(u \) let \(N(u) \) be its neighbors.

Observation

\(v_n \): Vertex in the graph.

One of the following two cases is true

- **Case 1** \(v_n \) is in some maximum independent set.
- **Case 2** \(v_n \) is in no maximum independent set.

RecursiveMIS\((G)\):

- If \(G \) is empty then Output 0
- \(a = \text{RecursiveMIS}(G - v_n) \)
- \(b = w(v_n) + \text{RecursiveMIS}(G - v_n - N(v_n)) \)
- Output \(\max(a, b) \)
Recursive Algorithms
..for Maximum Independent Set

Running time:

\[T(n) = T(n - 1) + T\left(n - 1 - \deg(v_n)\right) + O(1 + \deg(v_n)) \]

where \(\deg(v_n) \) is the degree of \(v_n \). \(T(0) = T(1) = 1 \) is base case.

Worst case is when \(\deg(v_n) = 0 \) when the recurrence becomes

\[T(n) = 2T(n - 1) + O(1) \]

Solution to this is \(T(n) = O(2^n) \).
1. Recursive algorithm generates a tree of computation where each node is a smaller problem (subproblem).

2. Simple recursive algorithm computes/explores the whole tree blindly in some order.

3. Backtrack search is a way to explore the tree intelligently to prune the search space.
 - Some subproblems may be so simple that we can stop the recursive algorithm and solve it directly by some other method.
 - Memoization to avoid recomputing the same problem.
 - Stop the recursion at a subproblem if it is clear that there is no need to explore further.
 - Leads to a number of heuristics that are widely used in practice although the worst case running time may still be exponential.
Example
Propositional Formulas

Definition

Consider a set of boolean variables \(x_1, x_2, \ldots, x_n \).

1. A **literal** is either a boolean variable \(x_i \) or its negation \(\neg x_i \).
2. A **clause** is a disjunction of literals.
 For example, \(x_1 \lor x_2 \lor \neg x_4 \) is a clause.
3. A **formula in conjunctive normal form (CNF)** is propositional formula which is a conjunction of clauses
 \[
 (x_1 \lor x_2 \lor \neg x_4) \land (x_2 \lor \neg x_3) \land x_5 \text{ is a } \text{CNF} \text{ formula.}
 \]
Propositional Formulas

Definition

Consider a set of boolean variables x_1, x_2, \ldots, x_n.

1. A **literal** is either a boolean variable x_i or its negation $\neg x_i$.
2. A **clause** is a disjunction of literals.
 For example, $x_1 \lor x_2 \lor \neg x_4$ is a clause.
3. A **formula in conjunctive normal form (CNF)** is a propositional formula which is a conjunction of clauses.

 $(x_1 \lor x_2 \lor \neg x_4) \land (x_2 \lor \neg x_3) \land x_5$ is a **CNF** formula.
4. A formula φ is a **3CNF**: A **CNF** formula such that every clause has **exactly** 3 literals.

 $(x_1 \lor x_2 \lor \neg x_4) \land (x_2 \lor \neg x_3 \lor x_1)$ is a **3CNF** formula, but

 $(x_1 \lor x_2 \lor \neg x_4) \land (x_2 \lor \neg x_3) \land x_5$ is not.
Problem: SAT

Instance: A CNF formula φ.

Question: Is there a truth assignment to the variable of φ such that φ evaluates to true?
Satisfiability

SAT

Given a **CNF** formula φ, is there a truth assignment to variables such that φ evaluates to true?

Example

1. $(x_1 \lor x_2 \lor \neg x_4) \land (x_2 \lor \neg x_3) \land x_5$ is satisfiable; take x_1, x_2, \ldots, x_5 to be all true

2. $(x_1 \lor \neg x_2) \land (\neg x_1 \lor x_2) \land (\neg x_1 \lor \neg x_2) \land (x_1 \lor x_2)$ is not satisfiable.
Figure : Backtrack search. Formula is not satisfiable.

Figure taken from Dasgupta etal book.
Part II

Introduction to Dynamic Programming
Fibonacci Numbers

Fibonacci numbers defined by recurrence:

\[F(n) = F(n - 1) + F(n - 2) \text{ and } F(0) = 0, F(1) = 1. \]

These numbers have many interesting and amazing properties.
A journal *The Fibonacci Quarterly!*

1. \[F(n) = \left(\phi^n - (1 - \phi)^n \right) / \sqrt{5} \] where \(\phi \) is the golden ratio \((1 + \sqrt{5})/2 \approx 1.618. \)
2. \[\lim_{n \to \infty} F(n + 1)/F(n) = \phi \]
How many bits?

Consider the nth Fibonacci number $F(n)$. Writing the number $F(n)$ in base 2 requires

(A) $\Theta(n^2)$ bits.
(B) $\Theta(n)$ bits.
(C) $\Theta(\log n)$ bits.
(D) $\Theta(\log \log n)$ bits.
Question: Given n, compute $F(n)$.

$Fib(n)$:

if ($n = 0$)
 return 0
else if ($n = 1$)
 return 1
else
 return $Fib(n - 1) + Fib(n - 2)$
Recursive Algorithm for Fibonacci Numbers

Question: Given n, compute $F(n)$.

$Fib(n)$:

```python
if (n == 0)
    return 0
else if (n == 1)
    return 1
else
    return Fib(n - 1) + Fib(n - 2)
```

Running time? Let $T(n)$ be the number of additions in $Fib(n)$.
Question: Given n, compute $F(n)$.

Fib(n):

```
if (n == 0)
    return 0
else if (n == 1)
    return 1
else
    return Fib(n - 1) + Fib(n - 2)
```

Running time? Let $T(n)$ be the number of additions in Fib(n).

$$T(n) = T(n - 1) + T(n - 2) + 1 \text{ and } T(0) = T(1) = 0$$
Recursive Algorithm for Fibonacci Numbers

Question: Given \(n \), compute \(F(n) \).

\[
\text{Fib}(n) :
\begin{align*}
\text{if } (n = 0) & \quad \text{return } 0 \\
\text{else if } (n = 1) & \quad \text{return } 1 \\
\text{else} & \quad \text{return } \text{Fib}(n - 1) + \text{Fib}(n - 2)
\end{align*}
\]

Running time? Let \(T(n) \) be the number of additions in \(\text{Fib}(n) \).

\[
T(n) = T(n - 1) + T(n - 2) + 1 \quad \text{and} \quad T(0) = T(1) = 0
\]

Roughly same as \(F(n) \)

\[
T(n) = \Theta(\phi^n)
\]

The number of additions is exponential in \(n \). Can we do better?
Running time of binom?

\[
\text{binom}(t, b) \quad \text{// computes } \binom{t}{b}
\]

// Using the identity: \(\binom{t}{b} = \binom{t-1}{b-1} + \binom{t-1}{b} \)

if \(t = 0 \) then return 0
if \(b = t \) or \(b = 0 \) then return 1
return \(\text{binom}(t - 1, b - 1) + \text{binom}(t - 1, b) \).

Assuming each arithmetic operation takes \(O(1) \) time, the running time of \(\text{binom}(n, \lfloor n/2 \rfloor) \) is

(A) \(\Theta(1) \).
(B) \(\Theta(n) \).
(C) \(\Theta(n \log n) \).
(D) \(\Theta(n^2) \).
(E) \(\Theta\left(\binom{n}{\lfloor n/2 \rfloor}\right) \).
An iterative algorithm for Fibonacci numbers

\textbf{FibIter}(n):
\begin{align*}
&\text{if } (n = 0) \text{ then} \\
&\quad \text{return } 0 \\
&\text{if } (n = 1) \text{ then} \\
&\quad \text{return } 1 \\
&F[0] = 0 \\
&F[1] = 1 \\
&\text{for } i = 2 \text{ to } n \text{ do} \\
&\quad F[i] \leftarrow F[i - 1] + F[i - 2] \\
&\text{return } F[n]
\end{align*}
An iterative algorithm for Fibonacci numbers

\textbf{FibIter}(n):

\begin{align*}
\text{if } (n = 0) \text{ then} & \quad \text{return } 0 \\
\text{if } (n = 1) \text{ then} & \quad \text{return } 1 \\
F[0] & = 0 \\
F[1] & = 1 \\
\text{for } i = 2 \text{ to } n \text{ do} & \\
& \quad F[i] \leftarrow F[i - 1] + F[i - 2] \\
\text{return } F[n]
\end{align*}

What is the running time of the algorithm?
An iterative algorithm for Fibonacci numbers

\textbf{FibIter}(n):
\begin{enumerate}
\item \textbf{if} \ (n = 0) \textbf{then}
\item \hspace{1em} \textbf{return} \ 0
\item \textbf{if} \ (n = 1) \textbf{then}
\item \hspace{1em} \textbf{return} \ 1
\item F[0] = 0
\item F[1] = 1
\item \textbf{for} \ i = 2 \ \textbf{to} \ n \ \textbf{do}
\item \hspace{1em} F[i] \leftarrow F[i - 1] + F[i - 2]
\item \textbf{return} \ F[n]
\end{enumerate}

What is the running time of the algorithm? \(O(n)\) additions.
What is the difference?

1. Recursive algorithm is computing the same numbers again and again.
2. Iterative algorithm is storing computed values and building bottom up the final value.
What is the difference?

1. Recursive algorithm is computing the same numbers again and again.

2. Iterative algorithm is storing computed values and building bottom up the final value. Memoization.
What is the difference?

1. Recursive algorithm is computing the same numbers again and again.

2. Iterative algorithm is storing computed values and building bottom up the final value. Memoization.

Dynamic Programming:
Finding a recursion that can be effectively/efficiently memoized.

Leads to polynomial time algorithm if number of sub-problems is polynomial in input size.
Automatic Memoization

Can we convert recursive algorithm into an efficient algorithm without explicitly doing an iterative algorithm?

\texttt{Fib(n)}:
\begin{itemize}
\item if \(n = 0 \) return 0
\item if \(n = 1 \) return 1
\item if \(\text{Fib}(n) \) was previously computed return stored value of \(\text{Fib}(n) \)
\item else return \(\text{Fib}(n-1) + \text{Fib}(n-2) \)
\end{itemize}

How do we keep track of previously computed values?

Two methods: explicitly and implicitly (via data structure)
Can we convert recursive algorithm into an efficient algorithm without explicitly doing an iterative algorithm?

\[
\text{Fib}(n): \\
\quad \text{if } (n = 0) \\
\quad \quad \text{return } 0 \\
\quad \text{if } (n = 1) \\
\quad \quad \text{return } 1 \\
\quad \text{if } (\text{Fib}(n) \text{ was previously computed}) \\
\quad \quad \text{return } \text{stored value of Fib}(n) \\
\text{else} \\
\quad \text{return } \text{Fib}(n - 1) + \text{Fib}(n - 2)
\]
Can we convert recursive algorithm into an efficient algorithm without explicitly doing an iterative algorithm?

\[\text{Fib}(n) : \]

\[
\begin{align*}
\text{if } (n = 0) & \quad \text{return } 0 \\
\text{if } (n = 1) & \quad \text{return } 1 \\
\text{if } (\text{Fib}(n) \text{ was previously computed}) & \quad \text{return } \text{stored value of Fib}(n) \\
\text{else} & \quad \text{return } \text{Fib}(n - 1) + \text{Fib}(n - 2)
\end{align*}
\]

How do we keep track of previously computed values?
Automatic Memoization

Can we convert recursive algorithm into an efficient algorithm without explicitly doing an iterative algorithm?

\[\text{Fib}(n): \]

\[
\begin{align*}
 &\text{if } (n = 0) \\
 &\quad \text{return } 0 \\
 &\text{if } (n = 1) \\
 &\quad \text{return } 1 \\
 &\text{if } (\text{Fib}(n) \text{ was previously computed}) \\
 &\quad \text{return stored value of Fib}(n) \\
 &\text{else} \\
 &\quad \text{return Fib}(n - 1) + \text{Fib}(n - 2)
\end{align*}
\]

How do we keep track of previously computed values?
Two methods: explicitly and implicitly (via data structure)
Automatic explicit memoization

Initialize table/array M of size n such that $M[i] = -1$ for $i = 0, \ldots, n$.

$\text{Fib}(n) :$

\begin{align*}
\text{if } (n = 0) & \text{ return } 0 \\
\text{if } (n = 1) & \text{ return } 1 \\
\text{if } (M[n] \neq -1) & \text{ (* } M[n] \text{ has stored value of } \text{Fib}(n) \text{ *)} \\
M[n] & \leftarrow \text{Fib}(n-1) + \text{Fib}(n-2) \\
\text{return } M[n]
\end{align*}
Automatic explicit memoization

Initialize table/array M of size n such that $M[i] = -1$ for $i = 0, \ldots, n$.

$\text{Fib}(n)$:

1. if $(n = 0)$

 return 0

2. if $(n = 1)$

 return 1

3. if $(M[n] \neq -1)$ (* $M[n]$ has stored value of $\text{Fib}(n)$ *)

 return $M[n]$

4. $M[n] \leftarrow \text{Fib}(n - 1) + \text{Fib}(n - 2)$

return $M[n]$

Need to know upfront the number of subproblems to allocate memory
Automatic implicit memoization

Initialize a (dynamic) dictionary data structure D to empty

$\text{Fib}(n)$:

\[
\begin{align*}
\text{if } (n = 0) & \quad \text{return } 0 \\
\text{if } (n = 1) & \quad \text{return } 1 \\
\text{if } (n \text{ is already in } D) & \quad \text{return value stored with } n \text{ in } D \\
\text{val} & \leftarrow \text{Fib}(n - 1) + \text{Fib}(n - 2) \\
\text{Store } (n, \text{val}) & \text{ in } D \\
\text{return } \text{val}
\end{align*}
\]
Explicit vs Implicit Memoization

1. Explicit memoization or iterative algorithm preferred if one can analyze problem ahead of time. Allows for efficient memory allocation and access.

2. Implicit and automatic memoization used when problem structure or algorithm is either not well understood or in fact unknown to the underlying system.
 1. Need to pay overhead of data-structure.
 2. Functional languages such as LISP automatically do memoization, usually via hashing based dictionaries.
Is the iterative algorithm a *polynomial* time algorithm? Does it take $O(n)$ time?

Input is n and hence input size is $\Theta(\log n)$. Output is $F(n)$ and output size is $\Theta(n)$. Why?

Hence output size is exponential in input size so no polynomial time algorithm possible!

Running time of iterative algorithm: $\Theta(n)$ additions but number sizes are $O(n)$ bits long! Hence total time is $O(n^2)$, in fact $\Theta(n^2)$. Why?

Running time of recursive algorithm is $O(n^\phi n)$ but can in fact shown to be $O(\phi n)$ by being careful. Doubly exponential in input size and exponential even in output size.

Chandra & Lenny (UIUC)
Is the iterative algorithm a *polynomial* time algorithm? Does it take \(O(n) \) time?

1. **Input** is \(n \) and hence input size is \(\Theta(\log n) \).

2. **Output** is \(F(n) \) and output size is \(\Theta(n) \). Why?

3. Hence output size is exponential in input size so no polynomial time algorithm possible!

4. Running time of iterative algorithm: \(\Theta(n) \) additions but number sizes are \(O(n) \) bits long! Hence total time is \(O(n^2) \), in fact \(\Theta(n^2) \). Why?

5. Running time of recursive algorithm is \(O(n\phi^n) \) but can in fact shown to be \(O(\phi^n) \) by being careful. Doubly exponential in input size and exponential even in output size.
How many distinct calls does \(\text{binom}(n, \lfloor n/2 \rfloor) \) makes during its recursive execution?

(A) \(\Theta(1) \).
(B) \(\Theta(n) \).
(C) \(\Theta(n \log n) \).
(D) \(\Theta(n^2) \).
(E) \(\Theta\left(\binom{n}{\lfloor n/2 \rfloor}\right) \).

That is, if the algorithm calls recursively \(\text{binom}(17, 5) \) about 5000 times during the computation, we count this is a single distinct call.
Running time of memoized binom?

D: Initially an empty dictionary.
binomM(t, b) // computes \(\binom{t}{b} \)
 if \(b = t \) then return 1
 if \(b = 0 \) then return 0
 if \(D[t, b] \) is defined then return \(D[t, b] \)
 \(D[t, b] \leftarrow \) binomM(t − 1, b − 1) + binomM(t − 1, b).
 return \(D[t, b] \)

Assuming that every arithmetic operation takes \(O(1) \) time, What is the running time of \(\text{binomM}(n, \lfloor n/2 \rfloor) \)?

(A) \(\Theta(1) \).
(B) \(\Theta(n) \).
(C) \(\Theta(n^2) \).
(D) \(\Theta(n^3) \).
(E) \(\Theta\left(\binom{n}{\lfloor n/2 \rfloor}\right) \).