1. Given an undirected graph \(G = (V, E) \) a matching \(M \) is a set of edges from \(E \) such that no two edges in \(M \) share an end point. A matching is perfect if \(|M| = |V|/2 \), that is, every vertex is matched by \(M \). It turns out that finding maximum matchings and perfect matchings in bipartite graphs\(^1\) is easier than in general graphs. The goal of this problem is to describe an incorrect reduction to point out that the proof of correctness of a reduction involves showing two directions. Here is the incorrect reduction. Given an arbitrary graph \(G = (V, E) \) create a bipartite graph \(G' = (V_1, V_2, E') \) where \(V_1 \) and \(V_2 \) are copies of \(V \). Formally \(V_1 = \{u^{(1)} \mid u \in V\} \) and \(V_2 = \{u^{(2)} \mid u \in V\} \). For every edge \((u, v) \in E \) we add two edges \((u^{(1)}, v^{(2)}) \) and \((v^{(1)}, u^{(2)}) \) in \(E' \).

- Show that \(G \) has a matching of size \(k \) implies that \(G' \) has a matching of size at least \(2k \).
- Give an example where \(G' \) has a matching of size at least \(2k \) but \(G \) does not have a matching of size \(k \). *Hint:* Consider \(G \) to be the union of two disjoint triangles.

2. Self-reduction. We focus on decision problems even when the underlying problem we are interested in is an optimization problem. For most problems of interest we can in fact show that a polynomial-time algorithm for the decision problem also implies a polynomial-time algorithm for the corresponding optimization problem. To illustrate this consider the maximum independent set (MIS) problem.

- Suppose you are given a algorithm that given a graph \(H \) and integer \(\ell \) outputs whether \(H \) has an independent set of size at least \(\ell \). Using this algorithm as a black box, describe a polynomial time algorithm that given a graph \(G \) and integer \(k \) outputs an independent set of size \(k \) in \(G \) if it has one. Note that you can use the black box algorithm more than once. *Hint:* What happens if you remove a vertex \(v \) and the independent set size does not decrease? What if it does?
- How would you efficiently find a maximum independent set in a given graph \(G \) using the black box?

3. A cycle \(C \) in a directed graph \(G \) is called a Hamiltonian cycle if it contains all the vertices of \(G \). The Hamiltonian Cycle problem is the following: given \(G \), does \(G \) contain a Hamiltonian cycle? The Longest Path problem is the following: given a directed graph \(G \) and integer \(k \), is there a simple path of length \(k \) in \(G \)? Assuming that you have a black box algorithm for the Longest Path problem describe a polynomial-time algorithm for the Hamiltonian Cycle problem. *Prove* the correctness of your algorithm.

\(^1\)A graph \(G = (V, E) \) is bipartite if \(V \) can be partitioned into \(V_1 \) and \(V_2 \) such that all edges have one end point in \(V_1 \) and the other in \(V_2 \); that is, \(V_1 \) and \(V_2 \) are independent sets.