This lab is about strings and regular expressions. Recall the definition and properties of the concatenation operator between strings.

Lemma 1: Concatenating nothing does nothing: For every string \(w \), we have \(w \cdot \epsilon = w \).

Lemma 2: Concatenation adds length: \(|w \cdot x| = |w| + |x|\) for all strings \(w \) and \(x \).

Lemma 3: Concatenation is associative: \((w \cdot x) \cdot y = w \cdot (x \cdot y)\) for all strings \(w \), \(x \), and \(y \).

1. Strings over the alphabet \{0, 1\} are called boolean strings. For a boolean string \(w \), define the bitwise complement \(c(w) \) inductively as follows: \(c(\epsilon) = \epsilon \), \(c(0) = 1 \), \(c(1) = 0 \), and \(c(au) = c(a)c(u) \). Reversal is defined as always: \(r(au) = r(u)a \) with base case \(r(\epsilon) = \epsilon \).

 Prove that \(r(c(w)) = c(r(w)) \) for all strings \(w \). You can assume a lemma that says for all \(u, v \), \(c(uv) = c(u)c(v) \).

2. Give regular expressions that describe each of the following languages over the alphabet \{0, 1\}. We won't get to all of these in section.

 (a) All strings containing at least three 0s.

 (b) All strings containing at least two 0s and at least one 1.

 (c) All strings containing the substring 000.

 (d) All strings not containing the substring 000.

 (e) All strings in which every run of 0s has length at least 3.

 (f) Every string except 000. [Hint: Don't try to be clever.]

 (g) All strings \(w \) such that in every prefix of \(w \), the number of 0s and 1s differ by at most 1.

 (h) All strings \(w \) such that in every prefix of \(w \), the number of 0s and 1s differ by at most 2.

 (i) All strings in which the substring 000 appears an even number of times.

 (For example, 0001000 and 0000 are in this language, but 00000 is not.)