Algorithms Lecture 37: Undecidiability [Fa’14]

Caveat lector: This is the zeroth (draft) edition of this lecture note. Please send bug reports and
suggestions to jeffe@illinois.edu.

| said in my haste, All men are liars.
— Psalms 116:11 (King James Version)

yields falsehood when preceded by its quotation.
— William V. Quine, “Paradox”, Scientific American (1962)

Some problems are so complex that you have to be highly intelligent and well
informed just to be undecided about them.

— Laurence Johnston Peter, Peter’s Aimanac (September 24, 1982)
“Proving or disproving a formula—once you've encrypted the formula into num-
bers, that is—is just a calculation on that number. So it means that the answer
to the question is, no! Some formulas cannot be proved or disproved by any
mechanical process! So | guess there’s some point in being human after all!”

Alan looked pleased until Lawrence said this last thing, and then his face
collapsed. “Now there you go making unwarranted assumptions.”

— Neal Stephenson, Cryptonomicon (1999)
No matter how P might perform, Q will scoop it:
Q uses P’s output to make P look stupid.

Whatever P says, it cannot predict Q:
P is right when it’s wrong, and is false when it’s true!

— Geoffrey S. Pullum, “Scooping the Loop Sniffer” (2000)

This castle is in unacceptable condition! UNACCEPTABLE!!

— Earl of Lemongrab [Justin Poiland], “Too Young”
Adventure Time (August 8, 2011)

37 Undecidability

Perhaps the single most important result in Turing’s remarkable 1936 paper is his solution to Hilbert’s
Entscheidungsproblem, which asked for a general automatic procedure to determine whether a given
statement of first-order logic is provable. Turing proved that no such procedure exists; there is no
systematic way to distinguish between statements that cannot be proved even in principle and statements
whose proofs we just haven’t found yet.

37.1 Acceptable versus Decidable

Recall that there are three possible outcomes for a Turing machine M running on any particular input
string w: acceptance, rejection, and divergence. Every Turing machine M immediately defines four
different languages (over the input alphabet X of M):

* The accepting language AccepT(M) := {w € =* | M accepts w}

* The rejecting language REJECT(M) := {w € &* | M rejects w}

* The halting language HALT(M) := AccEpT(M) U REJECT(M)

* The diverging language DIVERGE(M) := X* \ HaLT(M)

For any language L, the sentence “M accepts L” means AccEPT(M) = L, and the sentence “M decides L”
means AccepT(M) = L and DIvERGE(M) = &.

© Copyright 2014 Jeff Erickson.
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License (http://creativecommons.org/licenses/by-nc-sa/4.0/).
Free distribution is strongly encouraged; commercial distribution is expressly forbidden. See http://www.cs.uiuc.edu/~jeffe/teaching/algorithms/ for the most recent revision.

1

http://www.lel.ed.ac.uk/~gpullum/loopsnoop.html
http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cs.uiuc.edu/~jeffe/teaching/algorithms/

Algorithms Lecture 37: Undecidiability [Fa’14]

Now let L be an arbitrary language. We say that L is acceptable (or semi-computable, or semi-decidable,
or recognizable, or listable, or recursively enumerable) if some Turing machine accepts L, and unacceptable
otherwise. Similarly, L is decidable (or computable, or recursive) if some Turing machine decides L, and
undecidable otherwise.

37.2 Lo, I Have Become Death, Stealer of Pie

There is a subtlety in the definitions of “acceptable” and “decidable” that many beginners miss: A language
can be decidable even if we can’t exhibit a specific Turing machine decides it. As a canonical example,
consider the language IT = {w | 1! appears in the binary expansion of 7}. Despite appearances, this
language is decidable! There are only two cases to consider:

* Suppose there is an integer N such that the binary expansion of 7 contains the substring 1V
but does not contain the substring 1¥*!. Let My be the Turing machine with N + 3 states

{0,1,...,N,accept, reject}, start state 0, and the following transition function:
accept ifa=0O
6(gq,a) = { reject ifa#0andgq=n

(q+1,a,+1) otherwise
This machine correctly decides II.

* Suppose the binary expansion of 7 contains arbitrarily long substrings of 1s. Then any Turing
machine that accepts all inputs correctly decides II.

We have no idea which of these machines correctly decides I, but one of them does, and that’s enough!

37.3 Useful Lemmas

This subsection contains several lemmas that are useful for proving that languages are (un)decidable
or (un)acceptable. For almost all of these lemmas, the proofs are straightforward; readers are strongly
encouraged to try to prove each lemma themselves before reading ahead .

One might reasonably ask why we don’t also define “rejectable” and “haltable” languages. The
following lemma, whose proof is an easy exercise (hint, hint), implies that these are both identical to the
acceptable languages.

Lemma 1. Let M be an arbitrary Turing machine.

(a) There is a Turing machine MR such that Accepr(M®) = Resecr(M) and ResecT(MR) = Accepr(M).
(b) There is a Turing machine M such that Accepr(M*) = Accepr(M) and Resect(M?) = @.

(c) There is a Turing machine M such that Accepr(M*) = Harr(M) and Resect(M™) = .

The decidable languages have several fairly obvious useful properties.

Lemma 2. If L and L’ are decidable, then LUL’, LNL’, L\ L', and L \ L’ are also decidable.

Proof: Let M and M’ be Turing machines that decide L and L’, respectively. We can build a Turing
machine M|, that decides L U L’ as follows. First, M, copies its input string w onto a second tape.
Then M, runs M on input w (on the first tape), and then runs M’ on input w (on the second tape). If
either M or M’ accepts, then M, accepts; if both M and M’ reject, then M|, rejects.

The other three languages are similar. O

Algorithms Lecture 37: Undecidiability [Fa’14]

Corollary 3. The following hold for all languages L and L.

(a) If LNL’ is undecidable and L’ is decidable, then L is undecidable.
(b) If LUL’ is undecidable and L’ is decidable, then L is undecidable.
(c) If L\ L’ is undecidable and L’ is decidable, then L is undecidable.
(d) If L'\ L is undecidable and L’ is decidable, then L is undecidable.

The asymmetry between acceptance and rejection implies that merely acceptable languages are not
quite as well-behaved as decidable languages.

Lemma 4. For all acceptable languages L and L’, the languages L U L’ and L N L’ are also acceptable.

Proof: Let M and M’ be Turing machines that decide L and L’, respectively. We can build a Turing
machine M, that decides L N L’ as follows. First, M copies its input string w onto a second tape.
Then M, runs M on input w using the first tape, and then runs M’ on input w using the second tape. If
both M and M’ accept, then M, accepts; if either M or M’ reject, then M, rejects; if either M or M’
diverge, then M/, diverges (automatically).

The construction for L U L’ is more subtle; instead of running M and M’ in series, we must run them
in parallel. Like M, the new machine M|, starts by copying its input string w onto a second tape. But
then M, runs M and M’ simultaneously; with each step of M, simulating both one step of M on the first
tape and one step of M’ on the second. Ignoring the states and transitions needed for initialization, the
state set of M, is the product of the state sets of M and M’, and the transition function is

accept if g = accept or ¢’ = accept’
5u(q,a,q’,a’) = | reject, if ¢ = reject and q’ = reject’
(6(q,a),6’(q’,a’)) otherwise

Thus, M, accepts as soon as either M or M’ accepts, and rejects only after both M or M’ reject. O
Lemma 5. An acceptable language L is decidable if and only if ©* \ L is also acceptable.

Proof: Let M and M be Turing machines that accept L and ©* \ L, respectively. Following the previous
proof, we construct a new Turing machine M* that copies its input onto a second tape, and then simulates
M and M’ in parallel on the two tapes. If M accepts, then M* accepts; if M accepts, then M* rejects.
Since every string is accepted by either M or M, we conclude that M* decides L.

The other direction follows immediately from Lemma 1. O

37.4 Self-Haters Gonna Self-Hate

Let U be an arbitrary fixed universal Turing machine. Any Turing machine M can be encoded as a
string (M) of symbols from U’s input alphabet, so that U can simulate the execution of M on any suitably
encoded input string. Different universal Turing machines require different encodings.'

A Turing machine encoding is just a string, and any string (over the correct alphabet) can be used as
the input to a Turing machine. Thus, we can use the encoding (M) of any Turing machine M as the
input to another Turing machine. We've already seen an example of this ability in our universal Turing

'In fact, these undecidability proofs never actually use the universal Turing machine; all we really need is an encoding
function that associates a unique string (M) with every Turing machine M. However, we do need the encoding to be compatible
with a universal Turing machine for the results in Section 37.7.

Algorithms Lecture 37: Undecidiability [Fa’14]

machine U, but more significantly, we can use (M) as the input to the same Turing machine M. Thus,
each of the following languages is well-defined:

SELFACCEPT := {(M) | M accepts (M)}
SELFREJECT := {(M) ’ M rejects (M)}
SELFHALT := {(M) ’ M halts on (M)}
SELFDIVERGE := {(M) ’ M diverges on (M)}

One of Turing’s key observations is that SELFREJECT is undecidable; Turing proved this theorem by
contradiction as follows:

Suppose to the contrary that there is a Turing machine SR such that AccepT(SR) = SELFREJECT and
DIvERGE(SR) = @. More explicitly, for any Turing machine M,

* SR accepts (M) < M rejects (M), and
* SR rejects (M) < M does not reject (M).

In particular, these equivalences must hold when M is equal to SR. Thus,

* SR accepts (SR) < SR rejects (SR), and
* SRrejects (SR) < SR does not reject (SR).

In short, SR accepts (SR) if and only if SR rejects (SR), which is impossible! The only logical conclusion
is that the Turing machine SR does not exist!

37.5 Aside: Uncountable Barbers

Turing’s proof by contradiction is nearly identical to the famous diagonalization argument that
uncountable sets exist, published by Georg Cantor in 1891. Indeed, SELFREJECT is sometimes called “the
diagonal language”. Recall that a function f : A — B is a surjection’ if f (A) = {f(a) | a € A} =B.

Cantor’s Theorem. Let f: X — 2% be an arbitrary function from an arbitrary set X to its power set.
This function f is not a surjection.

Proof: Fix an arbitrary function f: X — 2%. Call an element x € X happy if x € f(x) and sad if
x & f(x). Let Y be the set of all sad elements of X; that is, for every element x € X, we have

xe€Y < x ¢ f(x).

For the sake of argument, suppose f is a surjection. Then (by definition of surjection) there must be an
element y € X such that f(y) =Y. Then for every element x € X, we have

x€f(y) &= x &f(x).

In particular, the previous equivalence must hold when x = y:

YEf(y) = y&fy).

We have a contradiction! We conclude that f is not a surjection after all. O

*more commonly, flouting all reasonable standards of grammatical English, “an onto function”

Algorithms Lecture 37: Undecidiability [Fa’14]

Now let X = 2*, and define the function f : X — 2% as follows:

Accept(M) if w= (M) for some Turing machine M

f(W):={®

if w is not the encoding of a Turing machine

Cantor’s theorem immediately implies that not all languages are acceptable.

Alternatively, let X be the set of all Turing machines that halt on all inputs. For any Turing machine
M € X, let f(M) be the set of all Turing machines N € X such that M accepts the encoding (N). Then a
Turing machine M is sad if it rejects its own encoding (M); thus, Y is essentially the set SELFREJECT.
Cantor’s argument now immediately implies that no Turing machine decides the language SELFREJECT.

The core of Cantor’s diagonalization argument also appears in the “barber paradox” popularized by
Bertrand Russell in the 1910s. In a certain small town, every resident has a haircut on Haircut Day. Some
residents cut their own hair; others have their hair cut by another resident of the same town. To obtain
an official barber’s license, a resident must cut the hair of all residents who don’t cut their own hair, and
no one else. Given these assumptions, we can immediately conclude that there are no licensed barbers.
After all, who would cut the barber’s hair?

To map Russell’s barber paradox back to Cantor’s theorem, let X be the set of residents, and let f(x)
be the set of residents who have their hair cut by x; then a resident is sad if they do not cut their own
hair. To prove that SELFREJECT is undecidable, replace “resident” with “a Turing machine that halts on
all inputs”, and replace “A cuts B’s hair” with “A accepts (B)”.

37.6 Just Don’t Know What to Do with Myself

Similar diagonal arguments imply that the other three languages SELFACCEPT, SELFHALT, and SELF-
DivERGE are also undecidable. The proofs are not quite as direct for these three languages as the proof for
SELFREJECT; each fictional deciding machine requires a small modification to create the contradiction.

Theorem 6. SELFAcCEPT is undecidable.

Proof: For the sake of argument, suppose there is a Turing machine SA such that AccerT(SA) =
SELFAccEPT and DIVERGE(M) = @. Let SAR be the Turing machine obtained from SA by swapping
its accept and reject states (as in the proof of Lemma 1). Then REJECT(SAR) = SELFAccEPT and
DIVERGE(SAR) = @. It follows that SAR rejects (SAR) if and only if SAR accepts (SAR), which is
impossible. O

Theorem 7. SELFHALT is undecidable.

Proof: Suppose to the contrary that there is a Turing machine SH such that AccepT(SH) = SELFHALT
and DIVERGE(SH) = . Let SHX be the Turing machine obtained from SH by redirecting every transition
to accept to a new hanging state hang, and then redirecting every transition to reject to accept. Then
AccepT(SHYX) = ©* \ SELFHALT and REJECT(SHY) = @. It follows that SHX accepts (SH*) if and only
if SHX does not halt on (SH*), and we have a contradiction. O

Theorem 8. SELFDIVERGE is unacceptable and therefore undecidable.

Proof: Suppose to the contrary that there is a Turing machine SD such that AccepT(M) = SELFDIVERGE.
Let SD? be the Turing machine obtained from M by redirecting every transition to reject to a new hanging
state hang such that §(hang,a) = (hang, a, +1) for every symbol a. Then AccepT(SD?) = SELFDIVERGE
and ReJECT(SD?) = @. It follows that SD” accepts (SD?) if and only if SD* does not halt on (SD%),
which is impossible. O

Algorithms Lecture 37: Undecidiability [Fa’14]

*37.7 Nevertheless, Acceptable

Our undecidability argument for SELFDIVERGE actually implies the stronger result that SELFDIVERGE is
unacceptable; we never assumed that the hypothetical accepting machine SD halts on all inputs. However,
we can use or modify our universal Turing machine to accept the other three languages.

Theorem 9. SELFACCEPT is acceptable.

Proof: We describe a Turing machine SA that accepts the language SELFACCEPT. Given any string w as
input, SA first verifies that w is the encoding of a Turing machine. If w is not the encoding of a Turing
machine, then SA diverges. Otherwise, w = (M) for some Turing machine M; in this case, SA writes
the string ww = (M)(M) onto its tape and passes control to the universal Turing machine U. U then
simulates M (the machine encoded by the first half of its input) on the string (M) (the second half of its
input).® In particular, U accepts (M, M) if and only if M accepts (M). We conclude that SR accepts (M)
if and only if M accepts (M). O

Theorem 10. SELFREJECT is acceptable.

Proof: Let UR be the Turing machine obtained from our universal machine U by swapping the accept
and reject states. We describe a Turing machine SR that accepts the language SELFREJECT as follows.
SR first verifies that its input string w is the encoding of a Turing machine and diverges if not. Otherwise,
SR writes the string ww = (M, M) onto its tape and passes control to the reversed universal Turing
machine UR. Then UR accepts (M, M) if and only if M rejects (M). We conclude that SR accepts (M) if
and only if M rejects (M). O

Finally, because SELFHALT is the union of two acceptable languages, SELFHALT is also acceptable.

37.8 The Halting Problem via Reduction

Consider the following related languages:*

ACCEPT := {(M ,w) | M accepts W}
REJECT := {(M, W) | M rejects w}
HaLT := {(M, w) | M halts on w}
DIVERGE := {(M, w) | M diverges on w}

Deciding the language HarT is what is usually meant by the halting problem: Given a program M and
an input w to that program, does the program halt? This problem may seem trivial; why not just run
the program and see? More formally, why not just pass the input string (M, x) to our universal Turing
machine U? That strategy works perfectly if we just want to accept HaLT, but we actually want to decide
HarLr; if M is not going to halt on w, we still want an answer in a finite amount of time. Sadly, we can’t
always get what we want.

3To simplify the presentation, I am implicitly assuming here that (M) = ((M)). Without this assumption, we need a
Turing machine that transforms an arbitrary string w € £}, into its encoding (w) for U; building such a Turing machine is
straightforward.

4Sipser uses the shorter name Ay, instead of Acceprt, but uses HALT},, instead of Hart. I have no idea why he thought
four-letter names are okay, but six-letter names are not. His subscript TM is just a reminder that these are languages of Turing
machine encodings, as opposed to encodings of DFAs or some other machine model.

Algorithms Lecture 37: Undecidiability [Fa’14]

Theorem 11. HALT is undecidable.

Proof: Suppose to the contrary that there is a Turing machine H that decides HALT. Then we can use H
to build another Turing machine SH that decides the language SELFHALT. Given any string w, the
machine SH first verifies that w = (M) for some Turing machine M (rejecting if not), then writes the
string ww = (M, M) onto the tape, and finally passes control to H. But SELFHALT is undecidable, so no
such machine SH exists. We conclude that H does not exist either. O

Nearly identical arguments imply that the languages AccerT, REJECT, and DIVERGE are undecidable.

Here we have our first example of an undecidability proof by reduction. Specifically, we reduced
the language SELFHALT to the language Hart. More generally, to reduce one language X to another
language Y, we assume (for the sake of argument) that there is a program Py that decides Y, and we
write another program that decides X, using Py as a black-box subroutine. If later we discover that Y is
decidable, we can immediately conclude that X is decidable. Equivalently, if we later discover that X is
undecidable, we can immediately conclude that Y is undecidable.

To prove that a language L is undecidable,
reduce a known undecidable language to L.

Perhaps the most confusing aspect of reduction arguments is that the languages we want to prove
undecidable nearly (but not quite) always involve encodings of Turing machines, while at the same time,
the programs that we build to prove them undecidable are also Turing machines. Our proof that HALT is
undecidable involved three different machines:

* The hypothetical Turing machine H that decides HALT.

* The new Turing machine SH that decides SELFHALT, using H as a subroutine.

* The Turing machine M whose encoding is the input to H.

It is incredibly easy to get confused about which machines are playing each in the proof. Therefore, it is
absolutely vital that we give each machine in a reduction proof a unique and mnemonic name, and then
always refer to each machine by name. Never write, say, or even think “the machine” or “that machine”
or (gods forbid) “it”. You also may find it useful to think of the working programs we are trying to

construct (H and SH in this proof) as being written in a different language than the arbitrary source
code that we want those programs to analyze ({(M) in this proof).

37.9 One Million Years Dungeon!

As a more complex set of examples, consider the following languages:
M) | AccepT(M) = @}
M) | REsECT(M) = @}

M) | HALT(M) = @}
M) | DIVERGE(M) = @}

NEVERACCEPT := {
NEVERREJECT := {

NEVERHALT := {

o~~~ —~

NEVERDIVERGE := {

Theorem 12. NEVERAcCEPT is undecidable.

Algorithms Lecture 37: Undecidiability [Fa’14]

Proof: Suppose to the contrary that there is a Turing machine NA that decides NEVERACCEPT. Then by
swapping the accept and reject states, we obtain a Turing machine NA® that decides the complementary
language * \ NEVERACCEPT.

To reach a contradiction, we construct a Turing machine A that decides Accept as follows. Given the
encoding (M, w) of an arbitrary machine M and an arbitrary string w as input, A writes the encoding (M,,)
of a new Turing machine M,, that ignores its input, writes w onto the tape, and then passes control to M.
Finally, A passes the new encoding (M,,) as input to NAR. The following cartoon tries to illustrate the
overall construction.

>
NAR " [accept

<Mw> | | Buitd [<m,>| [NA y
T 7 <M, o o \

A reduction from from AccEPT to NEVERACCEPT, which proves NEVERACCEPT undecidable.

N reject

Before going any further, it may be helpful to list the various Turing machines that appear in this
construction.

* The hypothetical Turing machine NA that decides NEVERACCEPT.

e The Turing machine NAR that decides ©* \ NEVERACCEPT, which we constructed by modifying NA.

e The Turing machine A that we are building, which decides AccepT using NAR as a black-box
subroutine.

* The Turing machine M, whose encoding is part of the input to A.
e The Turing machine M,, whose encoding A constructs from (M,w) and then passes to NAR as
input.

Now let M be an arbitrary Turing machine and w be an arbitrary string, and suppose we run our
new Turing machine A on the encoding (M, w). To complete the proof, we need to consider two cases:
Either M accepts w or M does not accept w.

* First, suppose M accepts w.

Then for all strings x, the machine M,, accepts x.

So AccerT(M,,) = &*, by the definition of Accept(M,,).
So (M,,) ¢ NEVERACCEPT, by definition of NEVERACCEPT.
So NA rejects (M,,), because NA decides NEVERACCEPT.
So NAR accepts (M,,), buy construction of NAR.

We conclude that A accepts (M, w), by construction of A.

Algorithms Lecture 37: Undecidiability [Fa’14]

* On the other hand, suppose M does not accept w, either rejecting or diverging instead.

Then for all strings x, the machine M,, does not accept x.
So AccerT(M,,) = @, by the definition of AccepT(M,,).
So (M,,) € NEVERACCEPT, by definition of NEVERACCEPT.
So NA accepts (M,,), because NA decides NEVERACCEPT.
So NAR rejects (M,,), buy construction of NAR.

We conclude that A rejects (M, w), by construction of A.

In short, A decides the language AccepT, which is impossible. We conclude that NA does not exist. O

Again, similar arguments imply that the languages NEVERREJECT, NEVERHALT, and NEVERDIVERGE
are undecidable. In each case, the core of the argument is describing how to transform the incoming
machine-and-input encoding (M, w) into the encoding of an appropriate new Turing machine (M,,).

Now that we know that NEVERAcCCEPT and its relatives are undecidable, we can use them as the basis
of further reduction proofs. Here is a typical example:

Theorem 13. The language DIVERGESAME := {(Ml) (M) { DiverGe(M;) = DIVERGE(Mz)} is undecidable.

Proof: Suppose for the sake of argument that there is a Turing machine DS that decides DIVERGESAME.
Then we can build a Turing machine N D that decides NEVERDIVERGE as follows. Fix a Turing machine Y
that accepts ©* (for example, by defining 6(start,a) = (accept,-,-) for all a € T'). Given an arbitrary
Turing machine encoding (M) as input, ND writes the string (M)(Y) onto the tape and then passes
control to DS. There are two cases to consider:

 If DS accepts (M)(Y), then DIVERGE(M) = DIVERGE(Y) = &, so (M) € NEVERDIVERGE.

» If DS rejects (M)(Y), then DIVERGE(M) # DIVERGE(Y) = &, so (M) ¢ NEVERDIVERGE.

In short, ND accepts (M) if and only if (M) € NEVERDIVERGE, which is impossible. We conclude that
DS does not exist. O

37.10 Rice’s Theorem

In 1953, Henry Rice proved the following extremely powerful theorem, which essentially states that every
interesting question about the language accepted by a Turing machine is undecidable.

Rice’s Theorem. Let £ be any set of languages that satisfies the following conditions:
* There is a Turing machine Y such that Accepr(Y) € L.
* There is a Turing machine N such that Accepr(N) & L.

The language AcceptIN(L) := {(M) | Accepr(M) € L} is undecidable.

Proof: Without loss of generality, suppose @ ¢ £. (A symmetric argument establishes the theorem in
the opposite case @ € £.) Fix an arbitrary Turing machine Y such that AccepT(Y) € L.

Suppose to the contrary that there is a Turing machine A, that decides AccepTIN(L). To derive a
contradiction, we describe a Turing machine H that decides the halting language HALT, using A, as a
black-box subroutine. Given the encoding (M, w) of an arbitrary Turing machine M and an arbitrary
string w as input, H writes the encoding (WTF) of a new Turing machine WTF that executes the following
algorithm:

WTF(x):
run M on input w (and discard the result)
run Y on input x

H then passes the new encoding (WTF) to A,.

Algorithms Lecture 37: Undecidiability [Fa’14]

Now let M be an arbitrary Turing machine and w be an arbitrary string, and suppose we run our new
Turing machine H on the encoding (M, w). There are two cases to consider.

* Suppose M halts on input w.

Then for all strings x, the machine WTF accepts x if and only if Y accepts x.
So AccepT(WTF) = AccerT(Y), by definition of Accert(-).

So AccerT(WTF) € £, by definition of Y.

So A accepts (WTF), because A decides AcCEPTIN(L).

So H accepts (M, w), by definition of H.

* Suppose M does not halt on input w.

Then for all strings x, the machine WTF does not halt on input x, and therefore does not
accept x.

So AccerT(WTF) = &, by definition of AccEPT(WTF).
So AcceprT(WTF) € £, by our assumption that @ & £.
So A, rejects (WTF), because A, decides AcCEPTIN(L).
So H rejects (M, w), by definition of H.

In short, H decides the language HaLT, which is impossible. We conclude that A, does not exist. O

The set £ in the statement of Rice’s Theorem is often called a property of languages, rather than a
set, to avoid the inevitable confusion about sets of sets. We can also think of £ as a decision problem
about languages, where the languages are represented by Turing machines that accept or decide them.
Rice’s theorem states that the only properties of languages that are decidable are the trivial properties
“Does this Turing machine accept an acceptable language?” (Answer: Yes, by definition.) and “Does this
Turing machine accept Discover?” (Answer: No, because Discover is a credit card, not a language.)

Rice’s Theorem makes it incredibly easy to prove that language properties are undecidable; we only
need to exhibit one acceptable language that has the property and another acceptable language that
does not. In fact, most proofs using Rice’s theorem can use at least one of the following Turing machines:

* Mjyccepr accepts every string, by defining &(start, a) = accept for every tape symbol a.

* Mg, ecr TejECts every string, by defining 6(start, a) = reject for every tape symbol a.

* Mpyeree diverges on every string, by defining 6(start, a) = (start, a, +1) for every tape symbol a.
Corollary 14. Each of the following languages is undecidable.

(@) {{M)| M accepts given an empty initial tape}
(b) {{M) | M accepts the string UTUC}

(
() {{M)| M accepts exactly three strings}
(d) {{M) | M accepts all palindromes}
(e) {(M) | AccepT(M) is regular}
@ {{(M) | Accepr(M) is not regular}
(9) {{(M) | Accepr(M) is undecidable}
(h) {{M) | Accepr(M) = Accept(N)}, for some arbitrary fixed Turing machine N.

Proof: In all cases, undecidability follows from Rice’s theorem.

(a) Let L be the set of all languages that contain the empty string. Then AccepTIN(L) = {(M) | M accept
given an empty initial tape}.

10

Algorithms Lecture 37: Undecidiability [Fa’14]

* Given an empty initial tape, Mpccppr accepts, so HALT(Mpccppr) € L.
* Given an empty initial tape, Mpreez dO€s not accept, so HALT(Mp zrar) € £-

Therefore, Rice’s Theorem implies that AccepTIN(L) is undecidable.

(b) Let £ be the set of all languages that contain the string UTUC.

* Mpceepr accepts UTUC, so HALT(Mpceppr) € L.
* Mpyeree does not accept UTUC, so HALT(Mpygree) € £-

Therefore, AccepTIN(L) = {{(M) | M accepts the string UIUC} is undecidable by Rice’s Theorem.

(c) There is a Turing machine that accepts the language {larry,curly,moe}. On the other hand,
Mpe zcr does not accept exactly three strings.

(d) Mpcegpr accepts all palindromes, and Mg .. does not accept all palindromes.

() Mggyecr accepts the regular language @, and there is a Turing machine Mgn;» that accepts the
non-regular language {0"1" | n > 0}.

() Mgg,eer accepts the regular language @, and there is a Turing machine Mgn;» that accepts the
non-regular language {0"1" | n > 0}.5

(8) Mpgymer accepts the decidable language @, and there is a Turing machine that accepts the undecidable
language SELFREJECT.

(h) The Turing machine N accepts AccepT(N) by definition. The Turing machine N®, obtained
by swapping the accept and reject states of N, accepts the language HarT(L) \ AccepT(N) #
AccepT(N). O

We can also use Rice’s theorem as a component in more complex undecidability proofs, where the
target language consists of more than just a single Turing machine encoding.

Theorem 15. The language L := {(M ,w) { M accepts wX for every integer k > O} is undecidable.

Proof: Fix an arbitrary string w, and let £ be the set of all languages that contain w* for all k. Then
AcCCEPT(Mpceppr) = LF € £ and ACCEPT(Mpg er) = @ € L. Thus, even if the string w is fixed in advance,
no Turing machine can decide L. O

Nearly identical reduction arguments imply the following variants of Rice’s theorem. (The names of
these theorems are not standard.)

Rice’s Rejection Theorem. Let £ be any set of languages that satisfies the following conditions:
* There is a Turing machine Y such that Reject(Y) € £
* There is a Turing machine N such that REJEcT(N) & L.

The language REJECTIN(L) := {(M) | Reject(M) € L} is undecidable.

Rice’s Halting Theorem. Let L be any set of languages that satisfies the following conditions:
* There is a Turing machine Y such that Har(Y) € £
* There is a Turing machine N such that HALT(N) ¢ L.

The language HALTIN(L) := {(M) | Harr(M) € L} is undecidable.

Rice’s Divergence Theorem. Let £ be any set of languages that satisfies the following conditions:

5Yes, parts (e) and (f) have exactly the same proof.

11

Algorithms Lecture 37: Undecidiability [Fa’14]

* There is a Turing machine Y such that DiverGe(Y) € £
* There is a Turing machine N such that DIVERGE(N) & L.

The language DIVERGEIN(L) := {(M) \ DiverGe(M) € L} is undecidable.

Rice’s Decision Theorem. Let £ be any set of languages that satisfies the following conditions:
* There is a Turing machine Y such that decides an language in L.
* There is a Turing machine N such that decides an language not in L.

The language DeciDEIN(L) := {(M) | M decides a language in L} is undecidable.

As a final sanity check, always be careful to distinguish the following objects:
* The string ¢
* The language @
* The language {¢}
* The language property &
* The language property {&}
* The language property {{¢}}
* The Turing machine Mg, ... that rejects every string and therefore decides the language @&.
* The Turing machine Mp . that diverges on every string and therefore accepts the language @.

*

37.11 The Rice-McNaughton-Myhill-Shapiro Theorem

The following subtle generalization of Rice’s theorem precisely characterizes which properties of acceptable
languages are acceptable. This result was partially proved by Henry Rice in 1953, in the same paper that
proved Rice’s Theorem; Robert McNaughton, John Myhill, and Norman Shapiro completed the proof a
few years later, each independently from the other two.®

The Rice-McNaughton-Myhill-Shapiro Theorem. Let £ be an arbitrary set of acceptable languages.
The language AccepTIn(L) := {(M) | Accepr(M) € L} is acceptable if and only if L satisfies the following
conditions:

(a) L is monotone: For any language L € L, every superset of L is also in L.

(b) L is compact: Every language in £ has a finite subset that is also in L.

(c) L is finitely acceptable: The language {(L) |LeLand L is ﬁnite} is acceptable.”

I won't give a complete proof of this theorem (in part because it requires techniques I haven’t
introduced), but the following lemma is arguably the most interesting component:

Lemma 16. Let £ be a set of acceptable languages. If £ is not monotone, then AccepTIN(L) is unacceptable.

®McNaughton never published his proof (although he did announce the result); consequently, this theorem is sometimes
called “The Rice-Myhill-Shapiro Theorem”. Even more confusingly, Myhill published his proof twice, once in a paper with John
Shepherdson and again in a later paper with Jacob Dekker. So maybe it should be called the Rice-Dekker-Myhill-McNaughton—
Myhill-Shepherdson—Shapiro Theorem.

"Here the encoding (L) of a finite language L C %* is exactly the string that you would write down to explicitly describe L.
Formally, (L) is the unique string over the alphabet ZU{{, ,, }, €} that contains the strings in L in lexicographic order, separated
by commas , and surrounded by braces {}, with € representing the empty string. For example, ({s, 0,01,0110,0110 1001}) =
{£,0,01,0110,01101001}.

12

Algorithms Lecture 37: Undecidiability [Fa’14]

Proof: Suppose to the contrary that there is a Turing machine Al that accepts AccepTIN(L). Using
this Turing machine as a black box, we describe a Turing machine SD that accepts the unacceptable
language SELFDIVERGE. Fix two Turing machines Y and N such that

AccepT(Y) € C,
AccepT(N) ¢ L,
and AccepT(Y) C AccepT(N).

Let w be the input to SD. After verifying that w = (M) for some Turing machine M (and rejecting
otherwise), SD writes the encoding (WTF) or a new Turing machine WTF that implements the following
algorithm:

WTF(x):

write x to second tape
write (M) to third tape
in parallel:
run Y on the first tape
run N on the second tape
run M on the third tape
if Y accepts x
accept
if N accepts x and M halts on (M)
accept

Finally, SD passes the new encoding (WTF) to Al .. There are two cases to consider:

* If M halts on (M), then AccepT(WTF) = AccepT(N) ¢ L, and therefore Al; does not accept

(WTF).

* If M does not halt on (M), then AccepT(WTF) = AccepT(Y) € £, and therefore Al accepts
(WTF).

In short, SD accepts SELFDIVERGE, which is impossible. We conclude that SD does not exist. O

Corollary 17. Each of the following languages is unacceptable.
(@) {{M) | Accepr(M) is finite}
(b) {{M) | Accepr(M) is infinite}

(
() {{M) | Accepr(M) is regular}
(d) {{M) | Accepr(M) is not regular}
(e) {{M) | Accepr(M) is decidable}
@ {(M) | Accepr(M) is undecidable}
() {{(M)| M accepts at least one string in SELFDIVERGE}
(h) {{M) | Accepr(M) = Accept(N)}, for some arbitrary fixed Turing machine N.

Proof: (a) The set of finite languages is not monotone: @ is finite; X* is not finite; both @ and ©* are
acceptable (in fact decidable); and @ C ¥*.

(b) The set of infinite acceptable languages is not compact: No finite subset of the infinite acceptable
language %* is infinite!

(c) The set of regular languages is not monotone: Consider the languages @ and {0"1" | n > 0}.

(d) The set of non-regular acceptable languages is not monotone: Consider the languages {6™"1" | n > 0}
and X*.

13

Algorithms Lecture 37: Undecidiability [Fa’14]

(e) The set of decidable languages is not monotone: Consider the languages & and SELFREJECT.

(f) The set of undecidable acceptable languages is not monotone: Consider the languages SELFREJECT
and ©*.

(g) The set £L ={L | LNSELFDIVERGE # @} is not finitely acceptable. For any string w, deciding whether
{w} € £ is equivalent to deciding whether w € SELFDIVERGE, which is impossible.

(h) If AcceprT(N) # X*, then the set {AccepT(N)} is not monotone. On the other hand, if AccepT(N) =
3*, then the set {AccepT(N)} is not compact: No finite subset of 3* is equal to >*! O

37.12 Turing Machine Behavior: It’s Complicated

Rice’s theorems imply that every interesting question about the language that a Turing machine
accepts—or more generally, the function that a program computes—is undecidable. A more subtle
question is whether we can recognize Turing machines that exhibit certain internal behavior. Some
behaviors we can recognize; others we can’t.

Theorem 18. The language NEverLEFT := {(M,w) | Given w as input, M never moves left} is decidable.

Proof: Given the encoding (M, w), we simulate M with input w using our universal Turing machine U,
but with the following termination conditions. If M ever moves its head to the left, then we reject. If
M halts without moving its head to the left, then we accept. Finally, if M reads more than |Q| blanks,
where Q is the state set of M, then we accept. If the first two cases do not apply, M only moves to the
right; moreover, after reading the entire input string, M only reads blanks. Thus, after reading |Q| blanks,
it must repeat some state, and therefore loop forever without moving to the left. The three cases are
exhaustive. O

Theorem 19. The language LEFTTHREE := {{M,w) | Given w as input, M eventually moves left three times
in a row} is undecidable.

Proof: Given (M), we build a new Turing machine M’ that accepts the same language as M and moves
left three times in a row if and only if it accepts, as follows. For each non-accepting state p of M, the new
machine M’ has three states p,, p,, p3, with the following transitions:

&'(py,a) = (g, b, A), where (g, b, A) = 6(p,a) and q # accept
8'(py,a) = (p3,a,+1)
5'(p3,a) = (py,a,—1)

In other words, after each non-accepting transition, M’ moves once to the right and then once to the left.
For each transition to accept, M’ has a sequence of seven transitions: three steps to the right, then three
steps to the left, and then finally accept’, all without modifying the tape. (The three steps to the right
ensure that M’ does not fall off the left end of the tape.)

Finally, M’ moves left three times in a row if and only if M accepts w. Thus, if we could decide
LEFTTHREE, we could also decide AcceEpT, which is impossible. O

There is no hard and fast rule like Rice’s theorem to distinguish decidable behaviors from undecidable
behaviors, but I can offer two rules of thumb.

* If it is possible to simulate an arbitrary Turing machine while avoiding the target behavior, then
the behavior is not decidable. For example: there is no algorithm to determine whether a given
Turing machine reenters its start state, or revisits the left end of the tape, or writes a blank.

14

Algorithms Lecture 37: Undecidiability [Fa’14]

* If a Turing machine with the target behavior is limited to a finite number of configurations, or is
guaranteed to force an infinite loop after a finite number of transitions, then the behavior is likely
to be decidable. For example, there are algorithms to determine whether a given Turing machine
ever leaves its start state, or reads its entire input string, or writes a non-blank symbol over a blank.

Exercises

1. Let M be an arbitrary Turing machine.

(a) Describe a Turing machine M® such that AccepT(M?) = ResEcT(M) and REJECT(MR) =
AccerT(M).

(b) Describe is a Turing machine M such that AccepT(M*) = AccepT(M) and REJECT(M?) = @.
(c) Describe is a Turing machine M such that AccepT(M!) = HaLt(M) and ResecT(M?) = @.

2. (a) Prove that AccePT is undecidable.
(b) Prove that REJECT is undecidable.

(c¢) Prove that DivERGE is undecidable.

3. (a) Prove that NEVERREJECT is undecidable.
(b) Prove that NEVERHALT is undecidable.

(c¢) Prove that NEVERDIVERGE is undecidable.

4. Prove that each of the following languages is undecidable.

(a) ArwavsAccert := {(M) | AccepT(M) = &*}
(b) ArwaysREJECT := {(M) | REJECT(M) = ¥*}
(c) ArwavsHarr := {(M) | HaLT(M) = &*}

(d) ALwaysDIVERGE := {(M) | DIVERGE(M) = &*}

5. Let £ be a non-empty proper subset of the set of acceptable languages. Prove that the following
languages are undecidable:

(a) REJECTIN(L) := {(M) | ReJECT(M) € L}
(b) HartIn(L) := {(M) { Hart(M) € L}
(¢) DivERGEIN(L) := {(M) | DIvERGE(M) € L}

6. For each of the following decision problems, either sketch an algorithm or prove that the problem is
undecidable. Recall that w® denotes the reversal of string w. For each problem, the input is the
encoding (M) of a Turing machine M.

(a) Does M accept (M)R?
(b) Does M reject any palindrome?

(c) Does M accept all palindromes?

15

Algorithms Lecture 37: Undecidiability [Fa’14]

(d
(e)
®
(€3]

Does M diverge only on palindromes?
Is there an input string that forces M to move left?
Is there an input string that forces M to move left three times in a row?

Does M accept the encoding of any Turing machine N such that AcCEPT(N) = SELFDIVERGE?

7. For each of the following decision problems, either sketch an algorithm or prove that the problem is
undecidable. Recall that w® denotes the reversal of string w. For each problem, the input is an
encoding (M, w) of a Turing machine M and its input string w.

(@)
(b)
(©)
(d
(e)
®
@
(h)
6y

),
(k)
M
(m)
(n)
(0)

Does M accept the string ww??

Does M accept either w or wR?

Does M either accept w or reject wR?

Does M accept the string w¥ for some integer k?

Does M accept w in at most 2wl steps?

If we run M on input w, does M ever change a symbol on its tape?

If we run M on input w, does M ever move to the right?

If we run M on input w, does M ever move to the right twice in a row?

If we run M on input w, does M move its head to the right more than 2" times (not
necessarily consecutively)?

If we run M with input w, does M ever change a 00 on the tape to any other symbol?
If we run M with input w, does M ever change a O on the tape to 1?

If we run M with input w, does M ever write a O0?

If we run M with input w, does M ever leave its start state?

If we run M with input w, does M ever reenter its start state?

If we run M with input w, does M ever reenter a state that it previously left? That is, are
there states p # g such that M moves from state p to state g and then later moves back to
state p?

8. Let M be a Turing machine, let w be an arbitrary input string, and let s and t be positive integers
integer. We say that M accepts w in space s if M accepts w after accessing at most the first s cells
on the tape, and M accepts w in time t if M accepts w after at most t transitions.

@

(b)

Prove that the following languages are decidable:
i. {(M,W) | M accepts w in time |W|2}
ii. {(M,W) | M accepts w in space |W|2}
Prove that the following languages are undecidable:
i. {(m) \ M accepts at least one string w in time |W|2}

ii. {(M) \ M accepts at least one string w in space |w|2}

16

Algorithms Lecture 37: Undecidiability [Fa’14]

9.

10.

*12.

11.

Let Ly be an arbitrary language. For any integer i > 0, define the language
L :={(M) | M decides L;_4}.

For which integers i > 0 is L; decidable? Obviously the answer depends on the initial language L;
give a complete characterization of all possible cases. Prove your answer is correct. [Hint: This
question is a lot easier than it looks!]

Argue that each of the following decision problems about programs in your favorite programming
language are undecidable.

(a) Does this program correctly compute Fibonacci numbers?

(b) Can this program fall into an infinite loop?

(c) Will the value of this variable ever change?

(d) Will this program every attempt to deference a null pointer?

(e) Does this program free every block of memory that it dynamically allocates?

(f) Is any statement in this program unreachable?

(g) Do these two programs compute the same function?

Call a Turing machine conservative if it never writes over its input string. More formally, a Turing
machine is conservative if for every transition 6(p,a) = (g, b, A) where a € %, we have b = a; and
for every transition 6(p,a) = (q, b, A) where a ¢ %, we have b # X.
(a) Prove that if M is a conservative Turing machine, then AccepT(M) is a regular language.
(b) Prove that the language {(M) | M is conservative and M accepts ¢} is undecidable.

Together, these two results imply that every conservative Turing machine accepts the same language
as some DFA, but it is impossible to determine which DFA.

(a) Prove that it is undecidable whether a given C++ program is syntactically correct. [Hint: Use
templates!]

(b) Prove that it is undecidable whether a given ANSI C program is syntactically correct. [Hint:
Use the preprocessor!]

(c) Prove that it is undecidable whether a given Perl program is syntactically correct. [Hint: Does
that slash character / delimit a regular expression or represent division?]

© Copyright 2014 Jeff Erickson.
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License (http://creativecommons.org/licenses/by-nc-sa/4.0/).

Free distribution is strongly encouraged; commercial distribution is expressly forbidden. See http://www.cs.uiuc.edu/~jeffe/teaching/algorithms/ for the most recent revision.

17

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cs.uiuc.edu/~jeffe/teaching/algorithms/

	Undecidability
	Acceptable versus Decidable
	Lo, I Have Become Death, Stealer of Pie
	Useful Lemmas
	Self-Haters Gonna Self-Hate
	Aside: Uncountable Barbers
	Just Don't Know What to Do with Myself
	Nevertheless, Acceptable
	The Halting Problem via Reduction
	One Million Years Dungeon!
	Rice's Theorem
	The Rice-McNaughton-Myhill-Shapiro Theorem
	Turing Machine Behavior: It's Complicated

