1. **Induction on strings.** Give complete, formal inductive proofs for the following claims. Your proofs must reply on the formal recursive definitions of the relevant string functions, not on intuition. Recall that the concatenation • and length |·| functions are formally defined as follows:

\[w \cdot y := \begin{cases}
 y & \text{if } w = \varepsilon \\
 a \cdot (x \cdot y) & \text{if } w = ax \text{ for some } a \in \Sigma \text{ and } x \in \Sigma^*
\end{cases} \]

\[|w| := \begin{cases}
 0 & \text{if } w = \varepsilon \\
 1 + |x| & \text{if } w = ax \text{ for some } a \in \Sigma \text{ and } x \in \Sigma^*
\end{cases} \]

(a) Prove that \(w^m \cdot w^n = w^{m+n} \) for every string \(w \) and all non-negative integers \(n \) and \(m \).

(b) Prove that \((w^m)^n = w^{mn} \) for every string \(w \) and all non-negative integers \(n \) and \(m \).

(c) Prove that \(|w^n| = n|w| \) for every string \(w \) and every integer \(n \geq 0 \).

- The reversal \(w^R \) of a string \(w \) is defined recursively as follows:

\[w^R := \begin{cases}
 \varepsilon & \text{if } w = \varepsilon \\
 x^R \cdot a & \text{if } w = ax \text{ for some } a \in \Sigma \text{ and } x \in \Sigma^*
\end{cases} \]

(a) Prove that \((w \cdot x)^R = x^R \cdot w^R \) for all strings \(w \) and \(x \). \((lab)\)

(b) Prove that \((w^R)^R = w \) for every string \(w \). \((lab)\)

(c) Prove that \(|w| = |w^R| \) for every string \(w \).

(d) Prove that \((w^n)^R = (w^R)^n \) for every string \(w \) and every integer \(n \geq 0 \).

- Consider the following pair of mutually recursive functions:

\[\text{evens}(w) := \begin{cases}
 \varepsilon & \text{if } w = \varepsilon \\
 \text{odds}(x) & \text{if } w = ax
\end{cases} \quad \text{odds}(w) := \begin{cases}
 \varepsilon & \text{if } w = \varepsilon \\
 a \cdot \text{evens}(x) & \text{if } w = ax
\end{cases} \]

For example, \(\text{evens}(\text{0001101}) = 010 \) and \(\text{odds}(\text{0001101}) = 0011 \).
(a) Prove the following identity for all strings \(w \) and \(x \):

\[
evens(w \cdot x) = \begin{cases}
evens(w) \cdot evens(x) & \text{if } |w| \text{ is even},
\evens(w) \cdot \odds(x) & \text{if } |w| \text{ is odd}.
\end{cases}
\]

(b) Prove the following identity for all strings \(w \):

\[
evens(w^R) = \begin{cases} （\evens(w))^R & \text{if } |w| \text{ is odd},
（\odds(w))^R & \text{if } |w| \text{ is even}.
\end{cases}
\]

(c) Prove that \(|w| = |evens(w)| + |odds(w)| \) for every string \(w \).

- Consider the following recursive function:

\[
\text{scramble}(w) := \begin{cases}
w & \text{if } |w| \leq 1
ba \cdot \text{scramble}(x) & \text{if } w = abx \text{ for some } a, b \in \Sigma \text{ and } x \in \Sigma^*.
\end{cases}
\]

For example, \(\text{scramble}(00\ 01\ 10\ 1) = 00\ 10\ 01\ 1 \).

(a) Prove that \(|\text{scramble}(w)| = |w| \) for every string \(w \).

(b) Prove that \(\text{scramble}(\text{scramble}(w)) = w \) for every string \(w \).
2. **Regular expressions.** For each of the following languages over the alphabet \(\{0, 1\} \), give an equivalent regular expression.

 - Every string of length at most 3. [Hint: Don’t try to be clever.]
 - Every string except \(010\). [Hint: Don’t try to be clever.]
 - All strings in which every run of consecutive \(0\)s has even length and every run of consecutive \(1\)s has odd length.
 - All strings not containing the substring \(010\).
 - All strings containing at least two \(1\)s and at least one \(0\).
 - All strings containing either at least two \(1\)s or at least one \(0\).
 - All strings such that in every prefix, the number of \(0\)s and the number of \(1\)s differ by at most 1.
 - The set of all strings in \(\{0, 1\}^*\) whose length is divisible by 3.
 - \(\langle S14 \rangle\) The set of all strings in \(0^*1^*\) whose length is divisible by 3.
 - The set of all strings in \(\{0, 1\}^*\) in which the number of \(1\)s is divisible by 3.

3. **Direct DFA construction.** Draw or formally describe a DFA that recognizes each of the following languages. If you draw the DFA you may omit transitions to “dump” states.

 - Every string of length at most 3.
 - Every string except \(010\).
 - The language \{LONG, LUG, LEGO, LEG, LUG, LOG, LINGO\}.
 - The language MOO\(^*\) + ME00\(^*\)W
 - All strings in which every run of consecutive \(0\)s has even length and every run of consecutive \(1\)s has odd length.
 - All strings not containing the substring \(010\).
 - The set of all strings in \(\{0, 1\}^*\) whose length is divisible by 3.
 - \(\langle S14 \rangle\) The set of all strings in \(0^*1^*\) whose length is divisible by 3.
 - The set of all strings in \(\{0, 1\}^*\) in which the number of \(1\)s is divisible by 3.
 - All strings \(w\) such that the binary value of \(w^R\) is divisible by 5.
 - All strings such that in every prefix, the number of \(0\)s and the number of \(1\)s differ by at most 2.
4. **Fooling sets.** Prove that each of the following languages is *not* regular.

- The set of all strings in \(\{0, 1\}^* \) with more 0s than 1s. \(\langle S14 \rangle \)
- The set of all strings in \(\{0, 1\}^* \) with fewer 0s than 1s.
- The set of all strings in \(\{0, 1\}^* \) with exactly twice as many 0s as 1s.
- The set of all strings in \(\{0, 1\}^* \) with at least twice as many 0s as 1s.
- \(\{0^n \mid n \geq 0\} \)
- \(\{0^{2^n} \mid n \geq 0\} \) \(\langle \text{Lab} \rangle \)
- \(\{0^{F_n} \mid n \geq 0\} \), where \(F_n \) is the \(n \)th Fibonacci number, defined recursively as follows:

\[
F_n := \begin{cases}
0 & \text{if } n = 0 \\
1 & \text{if } n = 1 \\
F_{n-1} + F_{n-2} & \text{otherwise}
\end{cases}
\]

- \(\{x#y \mid x, y \in \{0, 1\}^* \text{ and } \#(0, x) = \#(1, y)\} \)
- \(\{xy \mid x \in \{0, 1\}^* \text{ and } y = \text{flip}(x)\} \), where \(\text{flip}(w) \) is the string obtained from \(w \) by flipping every bit. For example, \(\text{flip}(0001101) = 1110010. \)
- The language of properly balanced strings of parentheses, described by the context-free grammar \(S \rightarrow \epsilon \mid SS \mid (S) \).
- \(\{(01)^n(10)^n \mid n \geq 0\} \)
- \(\{(01)^m(10)^n \mid n \geq m \geq 0\} \)
- \(\{w#x#y \mid w, x, y \in \Sigma^* \text{ and } w, x, y \text{ are not all equal}\} \)
5. **Regular or not?** For each of the following languages, either prove that the language is regular (by describing a DFA, NFA, or regular expression), or prove that the language is not regular (using a fooling set argument).

- The set of all strings in \(\{0, 1\}^* \) in which the substrings 01 and 10 appear the same number of times. (For example, the substrings 01 and 01 each appear three times in the string 110001101101.)
- The set of all strings in \(\{0, 1\}^* \) in which the substrings 00 and 11 appear the same number of times. (For example, the substrings 00 and 11 each appear three times in the string 110001101101.)
- The set of all strings in \(\{0, 1, (,), *, +, \emptyset, \}^* \) that are regular expressions over the alphabet \(\{0, 1\} \).
- The set of all strings in \(\{0, 1\}^* \) such that in every prefix, the number of 0s is greater than the number of 1s.
- The set of all strings in \(\{0, 1\}^* \) such that in every non-empty prefix, the number of 0s is greater than the number of 1s.
- The language generated by the following context-free grammar:

 \[
 S \rightarrow 0A1 | \varepsilon \\
 A \rightarrow 1S0 | \varepsilon
 \]
- The language generated by the following context-free grammar:

 \[
 S \rightarrow 0A1 \\
 A \rightarrow 1S0 | \varepsilon
 \]
- The language generated by the following context-free grammar:

 \[
 S \rightarrow 0S1 | 1S0 | \varepsilon
 \]
- \(\{w#x \mid w, x \in \{0, 1\}^* \text{ and no substring of } w \text{ is also a substring of } x\} \)
- \(\{w#x \mid w, x \in \{0, 1\}^* \text{ and no non-empty substring of } w \text{ is also a substring of } x\} \)
- \(\{w#x \mid w, x \in \{0, 1\}^* \text{ and every non-empty substring of } w \text{ is also a substring of } x\} \)
- \(\{w#x \mid w, x \in \{0, 1\}^* \text{ and } w \text{ is a substring of } x\} \)
- \(\{w#x \mid w, x \in \{0, 1\}^* \text{ and } w \text{ is a proper substring of } x\} \)
- \(\{xy \mid \#(0, x) = \#(1, y) \text{ and } \#(1, x) = \#(0, y)\} \)
- \(\{xy \mid \#(0, x) = \#(1, y) \text{ or } \#(1, x) = \#(0, y)\} \)
- \(\{xy \mid x, y \in \{0, 1\}^* \text{ and } (\#(0, x) = \#(1, y) \text{ or } \#(1, x) = \#(0, y))\} \)
6. **Product/subset constructions.** For each of the following languages \(L \subseteq \{0, 1\}^* \), formally describe a DFA \(M = (Q, \{0, 1\}, s, A, \delta) \) that recognizes \(L \). **Do not attempt to draw the DFA.** Instead, give a complete, precise, and self-contained description of each of the components \(Q, s, a, \) and \(\delta \). (Don't just describe several smaller DFAs and then say “product construction!”)

- \(\langle \langle S14 \rangle \rangle \) All strings that satisfy all of the following conditions:
 - the number of 0s is even
 - the number of 1s is divisible by 3
 - the total length is divisible by 5
- All strings that satisfy at least one of the following conditions: . . .
- All strings that satisfy exactly one of the following conditions: . . .
- All strings that satisfy exactly two of the following conditions: . . .
- All strings that satisfy an odd number of of the following conditions: . . .

- Other possible conditions:
 - The number of 0s in \(w \) is odd.
 - The number of 1s in \(w \) is not divisible by 5.
 - The length \(|w| \) is divisible by 7.
 - The binary value of \(w \) is divisible by 7.
 - The binary value of \(w^R \) is not divisible by 7.
 - \(w \) contains the substring 00
 - \(w \) does not contain the substring 11
 - \(ww \) does not contain the substring 101
7. **NFA construction.** Let L be an arbitrary regular language $\Sigma = \{0,1\}$. Prove that each of the following languages over $\{0,1\}$ is regular. “Describe” does not necessarily mean “draw”.

- All strings that satisfy at least one of the following conditions:
 - the number of 0s is even
 - the number of 1s is divisible by 3
 - the total length is divisible by 5.

- All strings such that in every prefix, the number of 0s and the number of 1s differ by at most 2.

- All strings such that in every substring, the number of 0s and the number of 1s differ by at most 2.

- $\text{PREFIXES}(L) := \{x \mid xy \in L \text{ for some string } x \in \Sigma^*\}$

- $\text{SUFFIXES}(L) := \{y \mid xy \in L \text{ for some string } y \in \Sigma^*\}$

- $\text{ONEINFRONT}(L) := \{1x \mid x \in L\}$

- $\text{MISSINGFIRST}(L) := \{w \in \Sigma^* \mid aw \in L \text{ for some symbol } a \in \Sigma\}$

- $\text{EVENS}(L) := \{\text{evens}(w) \mid w \in L\}$, where the functions evens and odds are recursively defined as follows:

 \[
 \text{evens}(w) := \begin{cases}
 \varepsilon & \text{if } w = \varepsilon \\
 \text{odds}(x) & \text{if } w = ax
 \end{cases}
 \]

 \[
 \text{odds}(w) := \begin{cases}
 \varepsilon & \text{if } w = \varepsilon \\
 a \cdot \text{evens}(x) & \text{if } w = ax
 \end{cases}
 \]

 For example, $\text{evens}(0001101) = 010$ and $\text{odds}(0001101) = 0011$.

- $\text{EVENS}^{-1}(L) := \{w \mid \text{evens}(w) \in L\}$, where the functions evens and odds are recursively defined as above.

- $\text{FLIP}(L) := \{\text{flip}(w) \mid w \in L\}$, where the function flip is defined recursively as follows:

 \[
 \text{flip}(w) := \begin{cases}
 \varepsilon & \text{if } w = \varepsilon \\
 1 \cdot \text{flip}(x) & \text{if } w = 0x \text{ for some string } x \\
 0 \cdot \text{flip}(x) & \text{if } w = 1x \text{ for some string } x
 \end{cases}
 \]

 For example, $\text{flip}(0001101) = 1110010$.

- $\text{SHUFFLE}(L) := \{\text{shuffle}(w, x) \mid w, x \in L\}$, where the function shuffle is defined recursively as follows:

 \[
 \text{shuffle}(w, x) := \begin{cases}
 x & \text{if } w = \varepsilon \\
 a \cdot \text{shuffle}(x, y) & \text{if } w = axy \text{ for some } a \in \Sigma \text{ and some } y \in \Sigma^*
 \end{cases}
 \]

 For example, $\text{shuffle}(0001101, 11111) = 010101111101$.

- $\text{SCRAMBLE}(L) := \{\text{scramble}(w) \mid w \in L\}$, where the function scramble is defined recursively as follows:

 \[
 \text{scramble}(w) := \begin{cases}
 w & \text{if } |w| \leq 1 \\
 ba \cdot \text{scramble}(x) & \text{if } w = abx \text{ for some } a, b \in \Sigma \text{ and } x \in \Sigma^*
 \end{cases}
 \]

 For example, $\text{scramble}(0001101) = 0010011$.
• \textit{Stutter}(L) := \{\textit{stutter}(w) \mid w \in L\}, where the function \textit{stutter} is defined recursively as follows:

\[
stutter(w) := \begin{cases}
 e & \text{if } w = \epsilon \\
 a a \cdot stutter(x) & \text{if } w = ax \text{ for some } a \in \Sigma \text{ and } x \in \Sigma^*
\end{cases}
\]

For example, \textit{stutter}(00101) = 0000110011.

• \textit{Stutter}^{-1}(L) := \{w \mid \textit{stutter}(w) \in L\}, where the function \textit{stutter} is defined recursively as above.

• \textit{Stuttered}(L) := \{w \in L \mid w = \textit{stutter}(x) \text{ for some } x \in \Sigma^*\}, where the function \textit{stutter} is defined recursively as above.
8. **True or False (sanity check).** For each statement below, check “True” if the statement is *always* true and “False” otherwise. Each correct answer is worth 1 point; each incorrect answer is worth -½ point; checking “I don’t know” is worth ¼ point; and flipping a coin is (on average) worth ¼ point.

Read each statement very carefully. Some of these are deliberately subtle.

Definitions

- For all languages L, if L is regular then L can be represented by a regular expression.
- For all languages L, if L is not regular then L cannot be represented by a regular expression.
- For all languages L, if L can be represented by a regular expression then L is regular.
- For all languages L, if L cannot be represented by a regular expression then L is not regular.
- For all languages L, if there is a DFA that accepts every string in L, then L is regular.
- For all languages L, if there is a DFA that accepts every string not in L, then L is not regular.
- For all languages L, if there is a DFA that rejects every string not in L, then L is regular.
- For all languages L, if for every string $w \in L$ there is a DFA that accepts w, then L is regular.
- For all languages L, if for every string $w \notin L$ there is a DFA that rejects w, then L is regular.
- For all languages L, if some DFA recognizes L, then some NFA also accepts L.
- For all languages L, if some NFA recognizes L, then some DFA also accepts L.
- For all languages $L \subseteq \Sigma^*$, if L cannot be described by a regular expression, then some DFA accepts $\Sigma^* \setminus L$.

Closure Properties

- For all regular languages L and L', the language $L \cap L'$ is regular.
- For all regular languages L and L', the language $L \cup L'$ is regular.
- For all regular languages L, the language L^* is regular.
- For all regular languages $A, B,$ and C, the language $(A \cup B) \setminus C$ is regular.
- For all languages $L \subseteq \Sigma^*$, if L is regular, then $\Sigma^* \setminus L$ is regular.
- For all languages $L \subseteq \Sigma^*$, if L is regular, then $\Sigma^* \setminus L$ is not regular.
- For all languages $L \subseteq \Sigma^*$, if L is not regular, then $\Sigma^* \setminus L$ is regular.
- For all languages $L \subseteq \Sigma^*$, if L is not regular, then $\Sigma^* \setminus L$ is not regular.
- For all languages L and L', the language $L \cap L'$ is regular.
- For all languages L and L', the language $L \cup L'$ is regular.
- For all languages L, the language L^* is regular.
- For all languages L, if L^* is regular, then L is regular.
- For all languages $A, B,$ and C, the language $(A \cup B) \setminus C$ is regular.
- For all languages L, if L is finite, then L is regular.
- For all languages L and L', if L and L' are finite, then $L \cup L'$ is regular.
• For all languages L and L', if L and L' are finite, then $L \cap L'$ is regular.
• For all languages L, if L contains a finite number of strings, then L is regular.
• For all languages $L \subseteq \Sigma^*$, if L contains infinitely many strings in Σ^*, then L is not regular.
• For all languages $L \subseteq \Sigma^*$, if L contains all but a finite number of strings of Σ^*, then L is regular.
• If L and L' are not regular, then $L \cap L'$ is not regular.
• If L and L' are not regular, then $L \cup L'$ is not regular.
• For all languages $L \subseteq \{0, 1\}^*$, if L contains a finite number of strings in \emptyset^*, then L is regular.
• For all languages $L \subseteq \{0, 1\}^*$, if L contains a all but a finite number of strings in \emptyset^*, then L is regular.
• If L is not regular and $L \cup L'$ is regular, then L' is regular.
• If L is regular and $L \cap L'$ is regular, then L' is regular.
• If L is not regular and $L \cap L'$ is not regular, then L' is not regular.
• If L is regular and $L \cap L'$ is not regular, then L' is not regular.

Equivalence Classes

• For all languages L, if L is regular, then \equiv_L has finitely many equivalence classes.
• For all languages L, if L is not regular, then \equiv_L has infinitely many equivalence classes.
• For all languages L, if \equiv_L has finitely many equivalence classes, then L is regular.
• For all languages L, if \equiv_L has infinitely many equivalence classes, then L is not regular.
• For all regular languages L, each equivalence class of \equiv_L is a regular language.
• For all languages L, each equivalence class of \equiv_L is a regular language.

Fooling Sets

• For all languages L, if L has an infinite fooling set, then L is not regular.
• For all languages L, if L has an finite fooling set, then L is regular.
• For all languages L, if L does not have an infinite fooling set, then L is regular.
• For all languages L, if L is not regular, then L has an infinite fooling set.
• For all languages L, if L is regular, then L has no infinite fooling set.
• For all languages L, if L is not regular, then L has no finite fooling set.
Specific Languages (gut check)

- $\langle S14 \rangle \{ \theta^i 1^j 2^k \mid i + j - k = 374 \}$ is regular.
- $\{ \theta^i 1^j 2^k \mid i + j - k \leq 374 \}$ is regular.
- $\{ \theta^i 1^j 2^k \mid i + j + k = 374 \}$ is regular.
- $\{ \theta^i 1^j 2^k \mid i + j + k > 374 \}$ is regular.
- $\langle S14 \rangle \{ \theta^i 1^j \mid i < 374 < j \}$ is regular.
- $\{ \theta^i 1^j \mid i - j < 374 \}$ is regular.
- $\langle S14 \rangle \{ \theta^i 1^j \mid (i - j) \text{ is divisible by } 374 \}$ is regular.
- $\{ \theta^i 1^j \mid (i + j) \text{ is divisible by } 374 \}$ is regular.
- $\{ \theta^n 2^i \mid n \geq 0 \}$ is regular.
- $\{ \theta^{37n+4} \mid n \geq 0 \}$ is regular.
- $\{ \theta^n 10^n \mid n \geq 0 \}$ is regular.
- $\{ \theta^m 10^n \mid m \geq 0 \text{ and } n \geq 0 \}$ is regular.
- $\{ w \in \{ \theta, 1 \}^* \mid |w| \text{ is divisible by } 374 \}$ is regular.
- $\{ w \in \{ \theta, 1 \}^* \mid w \text{ represents a integer divisible by } 374 \text{ in binary} \}$ is regular.
- $\{ w \in \{ \theta, 1 \}^* \mid w \text{ represents a integer divisible by } 374 \text{ in base 473} \}$ is regular.
- $\{ w \in \{ \theta, 1 \}^* \mid |\#(\theta, w) - \#(1, w)| < 374 \}$ is regular.
- $\{ w \in \{ \theta, 1 \}^* \mid |\#(\theta, x) - \#(1, x)| < 374 \text{ for every prefix } x \text{ of } w \}$ is regular.
- $\{ w \in \{ \theta, 1 \}^* \mid |\#(\theta, x) - \#(1, x)| < 374 \text{ for every substring } x \text{ of } w \}$ is regular.
- $\{ w\theta^{|(\theta, w)|} \mid w \in \{ \theta, 1 \}^* \}$ is regular.
- $\{ w\theta^{|(\theta, w)| \mod 374} \mid w \in \{ \theta, 1 \}^* \}$ is regular.

Automata Transformations

- Let M be a DFA over the alphabet Σ. Let M' be identical to M, except that accepting states in M are non-accepting in M' and vice versa. Each string in Σ^* is accepted by exactly one of M and M'.
- Let M be an NFA over the alphabet Σ. Let M' be identical to M, except that accepting states in M are non-accepting in M' and vice versa. Each string in Σ^* is accepted by exactly one of M and M'.
- If a language L is recognized by a DFA with n states, then the complementary language $\Sigma^* \setminus L$ is recognized by a DFA with at most $n + 1$ states.
- If a language L is recognized by an NFA with n states, then the complementary language $\Sigma^* \setminus L$ is recognized by a NFA with at most $n + 1$ states.
- If a language L is recognized by a DFA with n states, then L^* is recognized by a DFA with at most $n + 1$ states.
- If a language L is recognized by an NFA with n states, then L^* is also recognized by a NFA with at most $n + 1$ states.
Language Transformations

- For every regular language L, the language $L^R = \{w^R \mid w \in L\}$ is also regular. (HW)
- For every language L, if the language $L^R = \{w^R \mid w \in L\}$ is regular, then L is also regular.
- For every regular language L, the language $\{\theta^{|w|} \mid w \in L\}$ is also regular.
- For every language L, if the language $\{\theta^{|w|} \mid w \in L\}$ is regular, then L is also regular.