
Welcome to CS 477

Formal Methods
in

Software Development

Spring 2019
Madhusudan Parthasarathy (Madhu)

madhu@cs.uiuc.edu

What is this course about?

• Course on formal ways of
– Proving programs correct
– Developing reliable software
– Analyzing programs for correctness
– Finding bugs in software

• Formal Mathematical (provable/rigorous)

• Informal methods are also useful, but they are not
covered in this course; see Soft. Engg courses
– Eg. Random testing; Software management planning

Aims of this course
Theoretical:

- The fundamental mathematics behind proving a
program correct by reducing it to logic

Floyd-Hoare logic;
contracts; pre/post conditions; inductive invariants
verification conditions, strongest post, weakest pre

- Formal logic (FOL); to understand proof systems and
automatic theorem proving, some decidable theories

- Contract-based programming for both sequential and
concurrent programs; developing software using
contracts.

- Static analysis using abstraction; abstract
interpretations, overview of predicate abstraction.

- Finding test inputs formally using logic solvers

Aims of this course
Practical:

- Proving small programs correct using a modern
program verification tool (Floyd-style)

- Use SMT solvers to solve logical constraints;
understand how program verification can be done
using these solvers.

- Build static analysis algorithms for some analysis
problems using abstraction, and learn to use some
abstract-interpretation tools

- Learn contract based programming using Dafny;
use to generate unit tests and proofs

Aims of this course
The course is hence:

Formal-development of programs using contracts
+

Foundations of proving programs correct
+

Verification tools for proving programs using abstraction and
automatic theorem proving.

There are other formal software development methods that
we will probably not cover:

--- Model-based software development
--- Z-notation; B method, etc. (?)
--- UML, etc.

Landscape of program verification

Types -- engineered for each property

Floyd/Hoare style
verification

Testing
Symbolic

testing
using SAT
and SMT
solvers

Explicit
model

checking

Counter-example
guided abstraction
+ model-checking

Abstract Interpretation

Shallow specs;
more automataed

Complex specs;
less automated

Static
analysis/
data-flow
analsyis

Bounded-model-
checking using SMT

solvers
(unroll loops)

Contracts
• First proposed by Bertrand Meyer (Eiffel)

called ‘Design by Contract’™
• Inspired by Hoare-style program verification

• Writing specifications *with* the code that
formally specifies:
– Preconditions of methods
– Postconditions of methods
– Class invariants

Contracts
• A compelling way to build develop programs

– Specifications give formal documentation (not English
comments); helps in communication between
developers

– Specifications can be used to do unit testing
– Faster and more effective debugging by checking

contracts at runtime; leads to finding bugs earlier

– And…... can be used for program verification
(with lots of manual help:

loop invariants/thmprovers/patience!)

Contracts
• Impressive uses:

– E.g. Buffer-overflow errors were eradicated from MS
Windows kernel using contract-based programming
where contracts described the ranges of variables to
index arrays.

– Huge effort; tremendous gain;
– Satisfaction of programmers: bug localization

Techniques: Logic, Logic, Logic
• Logic!!

– Program analysis of all kinds requires reasoning
(E.g. x>y & x’=x+1 => x’>y;

adding x larger to the end of a sorted list is still
sorted if x is larger than all elements in the list)

– Advent of SMT solvers:
• Constraint solvers for particular theories
• Engineering abstraction of logical reasoning that any

program analysis tool can use
• Completely automated
• Boolean logic: SAT
• Other theories: linear arithmetic, arrays, heaps, etc.

Techniques: Logic
• Use of logic

– Formal specification logic (for contracts/invariants)
– Separation logic
– Hoare-style verification: Verification conditions
– Abstraction: finding the abstract transitions
– Symbolic execution: solving path constraints to generate input

SMT solvers enable all these technologies!

So you will learn logic:
Prop. Logic, FOL, FO theories like arithmetic,
reals, arrays, etc., and decidable fragments

Successful tools
• Testing by Symbolic executions

– PEX (http://research.microsoft.com/en-us/projects/pex/)
Whitebox testing

(internal to Microsoft; available in Visual Studio for .NET)
PEX-for-fun website

– SAGE
Checks for security vulnerabilities in Windows code

stems from DART/CUTE : ``concolic testing’’

– VeriSol (NEC) for Verilog
– CBMC for C

Some successful tools
• Explicit model-checking (we probably won’t cover this)

– Verisoft (http://cm.bell-labs.com/who/god/verisoft/)
• Fully automatic tool;systematic state-space exploration; 1996; Bell-labs

– SPIN (http://spinroot.com/spin/whatispin.html)
• Checks software models

– CHESS
• Concurrent programs with bounded preemptions

• Partially symbolic approaches
– Java PathFinder (NASA): (http://javapathfinder.sourceforge.net/)

Some successful tools
• Abstraction based tools

– ASTREE – abstract-interpretation (http://www.astree.ens.fr/)
For flight control software

– SLAM /SDV – Microsoft
(http://www.microsoft.com/whdc/devtools/tools/sdv.mspx)

For device drivers
– FSoft – NEC

(http://www.nec-labs.com/research/system/systems_SAV-website/index.php)

– TVLA (http://www.math.tau.ac.il/~tvla/)
Abstractions for heaps using shape analysis

– Yogi – MSR
http://research.microsoft.com/en-us/projects/yogi/
Combines static verification with testing

Some successful tools
• Deductive Floyd-Hoare style verification

– ESC-Java

– DAFNY (https://github.com/Microsoft/dafny)
and Boogie (MSR) (http://boogie.codeplex.com/)
and VCC (http://research.microsoft.com/en-us/projects/vcc/)

(use Z3 SMT solver)

– STORM (http://stormchecker.codeplex.com/)
• Unsound analysis for finding bugs (uses Z3)

– FUSION (from NEC)

Some successful tools

Contract-programming languages

– EIFFEL

– CodeContracts from MS for .NET (see also Spec#)

– JML (Java Modeling languages)

SMT (logic) solvers
• A plethora of satisfiability-modulo-theory solvers

– Simplify, Yices, Z3, CVC, UCLID
– SAT solvers: zChaff, MiniSAT,…

– Core technology in several engines
– Eg. Z3 is used in SDV,PREfix, PEX, SAGE, Yogi,

Spec#, VCC, HAVOC, SpecExplorer, FORMULA, F7,
M3, VS3, …

Course topics
– Floyd-style verification (motivatating need for logic)
– Prop. Logic, Predicate logic; Theories
– Soundness/completeness/Godel’s theorem. Proof systems
– Hoare logic and axiomatic semantics
– Basic paths; weakest pre; strongest post; partial correctness
– Decidable theories; SAT and SMT solvers
– Design by contract; code contracts
– Symbolic test input generation; bounded model-checking
– Logics for reasoning with heap
– Abstract Interpretation: Dataflow analysis, static analysis for

certain abstract domains.
– Invariant synthesis techniques

Logistics

• Course website: + Piazza newsgroup
• HWs (about once in two weeks on avg; more in the

beginning; less near the end; 5-6 sets)
• Grades will be curved (curve *may* be separate for

undergrads and grads)
HW: 30

Midterm: 30
Final exam: 40

Project: 50

• 3 credits: HW + Final (out of 100)
• 4 credits: HW + Final + Project (out of 150)

Homework sets

• Homework can be in groups of two
– You can work on problems in a group of two
– But you must submit homework write-ups individually, written by

yourself.
– You may submit homework with the person you work with as

well.
– Indicate clearly who you worked with.

Project
4 credits requires a project.

Involves either
- Reading up a set of papers, and writing a

report, or
- Programming a particular technique or

developing software using contracts, and
submitting a write-up

Groups of 3 or less; (ask for exceptions)
More details later…

A sample project
Develop a memory management routing that hands out
chunks of memory to processes ensuring no overlap.

Clear simple specification.

Implementation using linked lists.
Specification using separation logic or FO+recursion.
Prove correct using VCC/VCDryad/DAFNY.

Course resources
- No textbook; online handouts

(accessible from UIUC net domain)
- Software:

Many; need access to a MS Windows machine

– See course website for info:
http://www.cs.uiuc.edu/classs/cs477

– Enroll in Piazza

– Teaching Assistant: John Lee

Questions?

