Chapter 3

Propositional Logic

3.1 Introduction

Every logic comprises a (formal) language for making statements about ob-
jects and reasoning about properties of these objects. This view of logic is very
general and actually we will restrict our attention to mathematical objects,
programs, and data structures in particular. Statements in a logical language
are constructed according to a predefined set of formation rules (depending
on the language) called syntaz rules.

One might ask why a special language is needed at all, and why English
(or any other natural language) is not adequate for carrying out logical reason-
ing. The first reason is that English (and any natural language in general) is
such a rich language that it cannot be formally described. The second reason,
which is even more serious, is that the meaning of an English sentence can be
ambiguous, subject to different interpretations depending on the context and
implicit assumptions. If the object of our study is to carry out precise rigor-
ous arguments about assertions and proofs, a precise language whose syntax
can be completely described in a few simple rules and whose semantics can
be defined unambiguously is required.

Another important factor is conciseness. Natural languages tend to be
verbose, and even fairly simple mathematical statements become exceedingly
long (and unclear) when expressed in them. The logical languages that we
shall define contain special symbols used for abbreviating syntactical con-

28

3.1 Introduction 29

structs.

A logical language can be used in different ways. For instance, a language
can be used as a deduction system (or proof system); that is, to construct
proofs or refutations. This use of a logical language is called proof theory. In
this case, a set of facts called axioms and a set of deduction rules (inference
rules) are given, and the object is to determine which facts follow from the
axioms and the rules of inference. When using logic as a proof system, one is
not concerned with the meaning of the statements that are manipulated, but
with the arrangement of these statements, and specifically, whether proofs or
refutations can be constructed. In this sense, statements in the language are
viewed as cold facts, and the manipulations involved are purely mechanical, to
the point that they could be carried out by a computer. This does not mean
that finding a proof for a statement does not require creativity, but that the
interpetation of the statements is irrelevant. This use of logic is similar to
game playing. Certain facts and rules are given, and it is assumed that the
players are perfect, in the sense that they always obey the rules. Occasionally,
it may happen that following the rules leads to inconsistencies, in which case
it may be necessary to revise the rules.

However, the statements expressed in a logical language often have an
intended meaning. The second use of a formal language is for expressing
statements that receive a meaning when they are given what is called an in-
terpretation. In this case, the language of logic is used to formalize properties
of structures, and determine when a statement is true of a structure. This
use of a logical language is called model theory.

One of the interesting aspects of model theory is that it forces us to
have a precise and rigorous definition of the concept of truth in a structure.
Depending on the interpretation that one has in mind, truth may have quite
a different meaning. For instance, whether a statement is true or false may
depend on parameters. A statement true under all interpretations of the
parameters is said to be valid. A useful (and quite reasonable) mathematical
assumption is that the truth of a statement can be obtained from the truth
(or falsity) of its parts (substatements). From a technical point of view, this
means that the truth of a statement is defined by recursion on the syntactical
structure of the statement. The notion of truth that we shall describe (due to
Tarski) formalizes the above intuition, and is firmly justified in terms of the
concept of an algebra presented in Section 2.4 and the unique homomorphic
extension theorem (theorem 2.4.1).

The two aspects of logic described above are actually not independent,
and it is the interaction between model theory and proof theory that makes
logic an interesting and effective tool. One might say that model theory and
proof theory form a couple in which the individuals complement each other.
To illustrate this point, consider the problem of finding a procedure for listing
all statements true in a certain class of stuctures. It may be that checking
the truth of a statement requires an infinite computation. Yet, if the class of

30 3/Propositional Logic

structures can be axiomatized by a finite set of axioms, we might be able to
find a proof procedure that will give us the answer.

Conversely, suppose that we have a set of axioms and we wish to know
whether the resulting theory (the set of consequences) is consistent, in the
sense that no statement and its negation follow from the axioms. If one
discovers a structure in which it can be shown that the axioms and their con-
sequences are true, one will know that the theory is consistent, since otherwise
some statement and its negation would be true (in this structure).

To summarize, a logical language has a certain syntaz, and the meaning,
or semantics, of statements expressed in this language is given by an interpre-
tation in a structure. Given a logical language and its semantics, one usually
has one or more proof systems for this logical system.

A proof system is acceptable only if every provable formula is indeed
valid. In this case, we say that the proof system is sound. Then, one tries to
prove that the proof system is complete. A proof system is complete if every
valid formula is provable. Depending on the complexity of the semantics of a
given logic, it is not always possible to find a complete proof system for that
logic. This is the case, for instance, for second-order logic. However, there
are complete proof systems for propositional logic and first-order logic. In the
first-order case, this only means that a procedure can be found such that, if the
input formula is valid, the procedure will halt and produce a proof. But this
does not provide a decision procedure for validity. Indeed, as a consequence
of a theorem of Church, there is no procedure that will halt for every input
formula and decide whether or not a formula is valid.

There are many ways of proving the completeness of a proof system.
Oddly, most proofs establishing completeness only show that if a formula A is
valid, then there exists a proof of A. However, such arguments do not actually
yield a method for constructing a proof of A (in the formal system). Ounly the
existence of a proof is shown. This is the case in particular for so-called Henkin
proofs. To illustrate this point in a more colorful fashion, the above situation is
comparable to going to a restaurant where you are told that excellent dinners
exist on the menu, but that the inexperienced chef does not know how to
prepare these dinners. This may be satisfactory for a philosopher, but not for
a hungry computer scientist! However, there is an approach that does yield a
procedure for constructing a formal proof of a formula if it is valid. This is the
approach using Gentzen systems (or tableaux systems). Furthermore, it turns
out that all of the basic theorems of first-order logic can be obtained using
this approach. Hence, this author feels that a student (especially a computer
scientist) has nothing to lose, and in fact will reap extra benefits by learning
Gentzen systems first.

Propositional logic is the system of logic with the simplest semantics.
Yet, many of the concepts and techniques used for studying propositional logic
generalize to first-order logic. Therefore, it is pedagogically sound to begin by

3.2 Syntax of Propositional Logic 31

studying propositional logic as a “gentle” introduction to the methods used
in first-order logic.

In propositional logic, there are atomic assertions (or atoms, or propo-
sitional letters) and compound assertions built up from the atoms and the
logical connectives, and, or, not, implication and equivalence. The atomic
facts are interpreted as being either true or false. In propositional logic, once
the atoms in a proposition have received an interpretation, the truth value
of the proposition can be computed. Technically, this is a consequence of
the fact that the set of propositions is a freely generated inductive closure.
Certain propositions are true for all possible interpretations. They are called
tautologies. Intuitively speaking, a tautology is a wuniversal truth. Hence,
tautologies play an important role.

For example, let “John is a teacher,” “John is rich,” and “John is a
rock singer” be three atomic propositions. Let us abbreviate them as A,B,C.
Consider the following statements:

“John is a teacher”;

It is false that “John is a teacher” and “John is rich”;

If “John is a rock singer” then “John is rich.”

We wish to show that the above assumptions imply that

It is false that “John is a rock singer.”

This amounts to showing that the (formal) proposition

(%) (A and not(A and B) and (C implies B)) implies (not C)

is a tautology. Informally, this can be shown by contradiction. The statement
(%) is false if the premise (A and not(A and B) and (C implies B)) is true
and the conclusion (not C) is false. This implies that C is true. Since C is
true, then, since (C implies B) is assumed to be true, B is true, and since A is
assumed to be true, (A and B) is true, which is a contradiction, since not(A
and B) is assumed to be true.

Of course, we have assumed that the reader is familiar with the semantics
and the rules of propositional logic, which is probably not the case. In this
chapter, such matters will be explained in detail.

3.2 Syntax of Propositional Logic
The syntax of propositional logic is described in this section. This presentation

will use the concept of an inductive closure explained in Section 2.3, and the
reader is encouraged to review it.

32 3/Propositional Logic

3.2.1 The Language of Propositional Logic

Propositional formulae (or propositions) are strings of symbols from a count-
able alphabet defined below, and formed according to certain rules stated in
definition 3.2.2.

Definition 3.2.1 (The alphabet for propositional formulae) This alphabet
consists of:

(1) A countable set PS of proposition symbols: Py,Py,Ps...;

(2) The logical connectives: A (and), V (or), D (implication), = (not),
and sometimes = (equivalence) and the constant L (false);

(3) Auziliary symbols: “(” (left parenthesis), “)” (right parenthesis).

The set PROP of propositional formulae (or propositions) is defined as
the inductive closure (as in Section 2.3) of a certain subset of the alphabet of
definition 3.2.1 under certain operations defined below.

Definition 3.2.2 Propositional formulae. The set PROP of propositional
formulae (or propositions) is the inductive closure of the set PS U { L} under
the functions C-,, C, C\y, C5 and C=, defined as follows: For any two strings
A, B over the alphabet of definition 3.2.1,

C.(A) =-A,
CA(A.B) = (AAB),
Cy(A,B) = (AV B),
C-5(A,B)=(ADB) and
C=(A,B)=(A=B)

The above definition is the official definition of PROP as an inductive
closure, but is a bit formal. For that reason, it is often stated less formally as
follows:

The set PROP of propositions is the smallest set of strings over the
alphabet of definition 3.2.1, such that:

(1) Every proposition symbol P; is in PROP and L is in PROP;
(2) Whenever A is in PROP, —A is also in PROP;

)
(3) Whenever A, B are in PROP, (AV B), (AANB), (A D B) and
(A = B) are also in PROP.

)

(4) A string is in PROP only if it is formed by applying the rules
(1),(2),(3).

The official inductive definition of PROP will be the one used in proofs.

3.2 Syntax of Propositional Logic 33

3.2.2 Free Generation of PROP

The purpose of the parentheses is to ensure unique readability; that is, to
ensure that PROP is freely generated on PS. This is crucial in order to give
a proper definition of the semantics of propositions. Indeed, the meaning of a
proposition will be given by a function defined recursively over the set PROP,
and from theorem 2.4.1 (in the Appendix), we know that such a function exists
and is unique when an inductive closure is freely generated.

There are other ways of defining the syntax in which parentheses are un-
necessary, for example the prefix (or postfix) notation, which will be discussed
later.

It is necessary for clarity and to avoid contradictions to distinguish be-
tween the formal language that is the object of our study (the set PROP of
propositions), and the (informal) language used to talk about the object of
study. The first language is usually called the object language and the second,
the meta-language. It is often tedious to maintain a clear notational distinc-
tion between the two languages, since this requires the use of a formidable
number of symbols. However, one should always keep in mind this distinction
to avoid confusion (and mistakes !).

For example, the symbols P, @, R, ... will usually range over proposi-
tional symbols, and the symbols A, B, C, ... over propositions. Such symbols
are called meta-variables.

Let us give a few examples of propositions:

EXAMPLE 3.2.1

The following strings are propositions.
P17 P27 (PIVP2)7

((PL D P) = (P V P)), (=P, = (P, D1)),

(((Pl DPQ)/_\PQ)D_\Pl), (Plv_‘Pl)-

On the other hand, strings such as
(), or (PLV Py)A

are not propositions, because they cannot be constructed from PS and
1 and the logical connectives.

Since PROP is inductively defined on PS, the induction principle (of
Section 2.3) applies. We are now going to use this induction principle to show
that PROP is freely generated by the propositional symbols (and 1) and the
logical connectives.

34 3/Propositional Logic

Lemma 3.2.1 (i) Every proposition in PROP has the same number of left
and right parentheses.

(ii) Any proper prefix of a proposition is either the empty string, a
(nonempty) string of negation symbols, or it contains an excess of left paren-
theses.

(iii) No proper prefix of a proposition can be a proposition.

Proof: (i) Let S be the set of propositions in PROP having an equal
number of left and right parentheses. We show that S is inductive on the set
of propositional symbols and L. By the induction principle, this will show
that S = PROP, as desired. It is obvious that S contains the propositional
symbols (no parentheses) and L. It is also obvious that the rules in definition
3.2.2 introduce matching parentheses and so, preserve the above property.
This concludes the first part of the proof.

(ii) Let S be the set of propositions in PRO P such that any proper prefix
is either the empty string, a string of negations, or contains an excess of left
parentheses. We also prove that S is inductive on the set of propositional
symbols and 1. First, it is obvious that every propositional symbol is in
S, as well as L. Let us verify that S is closed under Cx, leaving the other
cases as an exercise. Let A and B be in S. The nonempty proper prefixes of
Cn(A,B) = (AN B) are:

where C is a proper prefix of A

(
(C
(A
(A/\
(AN where C' is a proper prefix of B
(A

/\B

Applying the induction hypothesis that A and B are in .S, we obtain the
desired conclusion.

Clause (iii) of the lemma follows from the two previous properties. If a
proper prefix of a proposition is a proposition, then by (i), it has the same
number of left and right parentheses. If a proper prefix has no parentheses, it
is either the empty string or a string of negations, but neither is a proposition.
If it has parentheses, by property (ii), it has an excess of left parentheses, a
contradiction. [

The above lemma allows us to show the theorem:

Theorem 3.2.1 The set PROP of propositions is freely generated by the
propositional symbols in PS, |, and the logical connectives.

Proof: First, we show that the restrictions of the functions C—,, Cx, Cy,
C5 and C= to PROP are injective. This is obvious for C', and we only check
this for Cx, leaving the other cases as an exercise. If (A A B) = (C' A D),
then AA B) = C A D). Either A= C, or A is a proper prefix of C, or C is

3.2 Syntax of Propositional Logic 35

a proper prefix of A. But the last two cases are impossible by lemma 3.2.1.
Then AB) = AD), which implies B = D.

Next, we have to show that the ranges of the restrictions of the above
functions to PROP are disjoint. We only discuss one case, leaving the others
as an exercise. For example, if (AA B) = (C D D), then AAB) =C D D).
By the same reasoning as above, we must have A = C. But then, we must
have A =D, which is impossible. Finally, since all the functions yield a string
of length greater than that of its arguments, all the conditions for being freely
generated are met.]

The above result allows us to define functions over PROP recursively.
Every function with domain PROP is uniquely determined by its restriction
to the set PS of propositional symbols and to L. We are going to use this fact
in defining the semantics of propositional logic. As an illustration of theorem
3.2.1, we give a recursive definition of the set of propositional letters occurring
in a proposition.

EXAMPLE 3.2.2

The function symbols : PROP — 2FS is defined recursively as follows:

symbols(L) = 0,
symbols(P;) = {P;},
symbols((B * C)) = symbols(B) U symbols(C), for x € {A,V,D,=},
symbols(—A) = symbols(A).

For example,

5ymb0ls(((P1 D Pg) V _\Pg) AN Pl)) = {Pl,PQ,Pg}.

In order to minimize the number of parentheses, a precedence is assigned
to the logical connectives and it is assumed that they are left associative.
Starting from highest to lowest precedence we have:

-

u o< >

9

EXAMPLE 3.2.3
AN B D C is an abbreviation for ((AA B) D C),

AV B A C an abbreviation for (A V (B A ()), and
AV BV C is an abbreviation for ((AV B) v ().

36 3/Propositional Logic

Parentheses can be used to disambiguate expressions. These conventions
are consistent with the semantics of the propositional calculus, as we shall see
in Section 3.3.

Another way of avoiding parentheses is to use the prefiz notation. In
prefix notation, (A V B) becomes VAB, (A A B) becomes AAB, (A D B)
becomes D AB and (A = B) becomes = AB.

In order to justify the legitimacy of the prefix notation, that is, to show
that the set of propositions in prefix notation is freely generated, we have to
show that every proposition can be written in a unique way. We shall come
back to this when we consider terms in first-order logic.

PROBLEMS

3.2.1. Let PROP be the set of all propositions over the set PS of proposi-
tional symbols. The depth d(A) of a proposition A is defined recur-
sively as follows:

d(L) =0,
d(P) =0, for each symbol P € PS,
d(~A) =1+ d(A),
d(AV B) =1+ max(d(A),d(B)),
d(A A B) =1+ maz(d(A),d(B)),
d(A D B) =1+ max(d(A),d(B)),
d(A = B) = 1 + maz(d(A), d(B)).

If PS; is the i-th stage of the inductive definition of PROP = (PSU
{L})+ (asin Section 2.3), show that P.S; consists exactly of all propo-
sitions of depth less than or equal to .

3.2.2. Which of the following are propositions? Justify your answer.
——=P;
P VP,
(P, V Py)
(=P D —Py)
A(PLV (PaAN(PsV Py) AN(PLA(PsAN—Py)V (PyV PY)))
(Hint: Use problem 3.2.1, lemma 3.2.1.)

3.2.3. Finish the proof of the cases in lemma 3.2.1.

PROBLEMS 37

3.2.4. The function sub: PROP — 2PROP which assigns to any proposition
A the set sub(A) of all its subpropositions is defined recursively as

follows:
sub(1) = {1},
sub(P;) = {P;}, for a propositional symbol P;,
sub(—A) = sub(A) U {—A},

sub((AV B)) = sub(A) Usub(B) U{(AV B)},
sub((A A B)) = sub(A) U sub(B) U{(AA B)},
sub((A D B)) = sub(A) Usub(B)U{(A D B)},
sub((A = B)) = sub(A) Usub(B)U{(A = B)}.

Prove that if a proposition A has n connectives, then sub(A) contains
at most 2n + 1 propositions.

3.2.5. Give an example of propositions A and B and of strings v and v such
that (AV B) = (uVv), but u # A and v # B. Similarly give an
example such that (AV B) = (uAwv), but u# A and v # B.

x 3.2.6. The set of propositions can be defined by a context-free grammar,
provided that the propositional symbols are encoded as strings over a
finite alphabet. Following Lewis and Papadimitriou, 1981, the symbol
P;, (¢ > 0) will be encoded as PI...I$, with a number of I’s equal
to 4. Then, PROP is the language L(G) defined by the following
context-free grammar G = (V, X, R, S):

Z:{P7[a$>/\7\/7355aﬁaj~}a V:ZU{SaN}a

R={N —e,
N — NI,
S — PN,
S —1,
S — (SVS),
S — (SAS),
S—(SD29),
S—(5S=9),
S — =S}

Prove that the grammar G is unambiguous.

Note: The above language is actually SLR(1). For details on parsing
techniques, consult Aho and Ullman, 1977.

3.2.7. The set of propositions in prefix notation is the inductive closure of
PS U {L} under the following functions:

38

3.2.8.

3/Propositional Logic

For all strings A, B over the alphabet of definition 3.2.1, excluding
parentheses,

Cn(A,B) = AAB,
Cy(A, B) = VAB,
C5(A, B) =D AB,
C_(A, B) == AB,

C.(A) = -A.

In order to prove that the set of propositions in prefix notation is
freely generated, we define the function K as follows:

K(n) = -1; K(v) = =1; K©O) = —-1; K(=) = -1; K(=) = 0;
K(Ll)=1; K(P;) =1, for every propositional symbol P;.

The function K is extended to strings as follows: For every string
wy...wy, (over the alphabet of definition 3.2.1, excluding parentheses),
K(wy..wg) = K(wy) + ... + K(wy).

(i) Prove that for any proposition A, K(A) = 1.
(ii) Prove that for any proper prefix w of a proposition, K (w) < 0.
(iii) Prove that no proper prefix of a proposition is a proposition.

(iv) Prove that the set of propositions in prefix notation is freely
generated.

Suppose that we modify definition 3.2.2 by omitting all right paren-
theses. Thus, instead of

(PA=Q) D (RVS)),

we have

(PA-Q>D(RVS.

Formally, we define the functions:

Ca(A,B) = (AN B,
Cy(A,B) = (AV B,
C5(A,B) = (A A4,
C_(A,B) = (A= A4,
C_(A) = -A.

Prove that the set of propositions defined in this fashion is still freely
generated.

3.3 Semantics of Propositional Logic 39

3.3 Semantics of Propositional Logic

In this section, we present the semantics of propositional logic and define the
concepts of satisfiability and tautology.

3.3.1 The Semantics of Propositions

The semantics of the propositional calculus assigns a truth function to each
proposition in PROP. First, it is necessary to define the meaning of the
logical connectives. We first define the domain BOOL of truth values.

Definition 3.3.1 The set of truth values is the set BOOL = {T,F}. It is
assumed that BOOL is (totally) ordered with F < T.

Fach logical connective X is interpreted as a function Hx with range
BOOL. The logical connectives are interpreted as follows.

Definition 3.3.2 The graphs of the logical connectives are represented by
the following table:

P Q H—\(P) H/\(PvQ) H\/<P7Q) HD(PaQ) HE(PvQ)
T|T F T T T T
T F F F T F F
F|IT| T F T T F
FIF| T F F T T

The logical constant L is interpreted as F.

The above table is what is called a truth table. We have introduced the
function Hx to distinguish between the symbol X and its meaning H x. This
is a heavy notational burden, but it is essential to distinguish between syntax
and semantics, until the reader is familiar enough with these concepts. Later
on, when the reader has assimilated these concepts, we will often use X for
Hx to simplify the notation.

We now define the semantics of formulae in PROP.

Definition 3.3.3 A truth assignment or valuation is a function v : PS —
BOOL assigning a truth value to all the propositional symbols. From theo-
rem 2.4.1 (in the Appendix), since PROP is freely generated by PS, every
valuation v extends to a unique function v : PROP — BOOL satisfying the
following clauses for all A, B € PROP:

40 3/Propositional Logic

u(Ll)=F,
v(P) = v(P), for all P € PS,
v(=4) = H-(v(4)),
(AN B)) = Hx(U(A),9(B)),
9((AV B)) = Hy(v(A),0(B)),
v((A D B)) = H5(v(A),v(B)),
9((A = B)) = H=(v(A),v(B)).

In the above definition, the ¢ruth value ¥(A) of a proposition A is defined
for a truth assignment v assigning truth values to all propositional symbols,
including infinitely many symbols not occurring in A. However, for any for-
mula A and any valuation v, the value ¥(A) only depends on the propositional
symbols actually occurring in A. This is justified by the following lemma.

Lemma 3.3.1 For any proposition A, for any two valuations v and v’ such
that v(P) = v'(P) for all proposition symbols occurring in A, 9(A) = v'(A).

Proof: We proceed by induction. The lemma is obvious for 1, since L
does not contain any propositional symbols. If A is the propositional symbol
P;, since v(P;) = v'(P;), 0(P;) = v(P;), and v/(P;) = v'(F;), the Lemma holds
for propositional symbols.

If A is of the form =B, since the propositional symbols occurring in B
are the propositional symbols occurring in A, by the induction hypothesis,
v(B) = v'(B). Since

9(A) = H.(3(B)) and v'(A) = H_(v/(B)),

we have

B(A) = v/(A).

If A is of the form (B * C), for a connective x € {V, A, D, =}, since the
sets of propositional letters occurring in B and C are subsets of the set of
propositional letters occurring in A, the induction hypothesis applies to B
and C. Hence, R

v(B)=v'(B) and ©v(C)=1'(C).

But
5(A) = H.(9(B),5(C)) = H.(v/(B),v'(C)) = v/(A),

showing that R
v(A) =v'(A).

O

Using lemma 3.3.1, we observe that given a proposition A containing the
set of propositional symbols { P, ..., P, }, its truth value for any assignment v
can be computed recursively and only depends on the values v(Py), ..., v(Py).

3.3 Semantics of Propositional Logic

EXAMPLE 3.3.1

Let

In turn,

Since

we have

41

A=((P>Q)=(-Q>~P)).

Let v be a truth assignment whose restriction to {P, @} is v(P) = T,
v(Q) = F. According to definition 3.3.3,

v(A) = H=(v((P 2 @)),v((—=Q D =P))).

We also have

Hence,

Finally,

o(PoQ))=H

(0(P),v(Q)) and

<

v((=Q > =P)) = H5(v(=Q), 9(=P)).

v(P)=wv(P) and

v(Q) = v(Q),

(P> Q) = Ho(T,F) = F.

<)

The above recursive computation can be conveniently described by a
truth table as follows:

-P

—Q

(P2Q)

(=Q > —P)

(P2Q)=(=Q>~P))

P
T

Q
F

F

T

F

F

T

If ¥(A) = T for a valuation v and a proposition A, we say that v satisfies
A, and this is denoted by v = A. If v does not satisfy A, we say that v falsifies
A, and this is denoted by, not v = A, or v = A.

An expression such as v = A (or v & A) is merely a notation used in
the meta-language to express concisely statements about satisfaction. The
reader should be well aware that such a notation is not a proposition in the
object language, and should be used with care. An illustration of the danger

42 3/Propositional Logic

of mixing the meta-language and the object language is given by the definition
(often found in texts) of the notion of satisfaction in terms of the notation
v |= A. Using this notation, the recursive clauses of the definition of ¥ can be
stated informally as follows:

v L,
v P iff u(P) =T,
viE-Aiff vE A,
vEAABIiff vlE Aand v = B,
vEAVBIiff vE Aorwv = B,
vEADBIiff vl Aorv =B,
vEA=Biff wWEAiffvE B).

The above definition is not really satisfactory because it mixes the object
language and the meta-language too much. In particular, the meaning of
the words not, or, and and iff is ambiguous. What is worse is that the
legitimacy of the recursive definition of “E” is far from being clear. However,
the definition of = using the recursive definition of ¥ is rigorously justified by
theorem 2.4.1 (in the Appendix).

An important subset of PROP is the set of all propositions that are
true in all valuations. These propositions are called tautologies.

3.3.2 Satisfiability, Unsatisfiability, Tautologies

First, we define the concept of a tautology.

Definition 3.3.4 A proposition A is valid iff 9(A) = T for all valuations v.
This is abbreviated as = A, and A is also called a tautology.

A proposition is satisfiable if there is a valuation (or truth assignment)
v such that 9(A) = T. A proposition is unsatisfiable if it is not satisfied by
any valuation.

Given a set of propositions I', we say that A is a semantic consequence
of I, denoted by I" = A, if for all valuations v, ¥(B) = T for all B in I" implies
that (A) = T.

The problem of determining whether any arbitrary proposition is satis-
fiable is called the satisfiability problem. The problem of determining whether
any arbitrary proposition is a tautology is called the tautology problem.

EXAMPLE 3.3.2

The following propositions are tautologies:

ADA,

3.3 Semantics of Propositional Logic 43

——A D A,
(PDOQ)=(-Q > ~P).

The proposition
(PVQ)A(-PV Q)

is satisfied by the assignment v(P) = F, v(Q) = T.

The proposition
(=PVQ)AN(—PV-Q)AP

is unsatisfiable. The following are valid consequences.

A,(AD B) E B,
A,B = (AN B),
(AD B),-BE —A.

Note that P D @ is false if and only if both P is true and @ is false. In
particular, observe that P D @ is true when P is false.

The relationship between satisfiability and being a tautology is recorded
in the following useful lemma.

Lemma 3.3.2 A proposition A is a tautology if and only if —A is unsatisfi-
able.

Proof: Assume that A is a tautology. Hence, for all valuations v,
v(A)=T.
Since

v(=A4) = H-(v(A)),
v(A) =T if and only if ©(—A)=F.

This shows that for all valuations v,
v(—A) =F,
which is the definition of unsatisfiability. Conversely, if =A is unsatisfiable,

for all valuations v,
v(—A)=F.

By the above reasoning, for all v,

which is the definition of being a tautology. [

44 3/Propositional Logic

The above lemma suggests two different approaches for proving that
a proposition is a tautology. In the first approach, one attempts to show
directly that A is a tautology. The method in Section 3.4 using Gentzen
systems illustrates the first approach (although A is proved to be a tautology
if the attempt to falsify A fails). In the second approach, one attempts to
show indirectly that A is a tautology, by showing that —A is unsatisfiable.
The method in Chapter 4 using resolution illustrates the second approach.

As we saw in example 3.3.1, the recursive definition of the unique exten-
sion ¥ of a valuation v suggests an algorithm for computing the truth value
v(A) of a proposition A. The algorithm consists in computing recursively the
truth tables of the parts of A. This is known as the truth table method.

The truth table method clearly provides an algorithm for testing whether
a formula is a tautology: If A contains n propositional letters, one constructs
a truth table in which the truth value of A is computed for all valuations
depending on n arguments. Since there are 2" such valuations, the size of
this truth table is at least 2". It is also clear that there is an algorithm for
deciding whether a proposition is satisfiable: Try out all possible valuations
(2™) and compute the corresponding truth table.

EXAMPLE 3.3.3

Let us compute the truth table for the proposition A = (P D Q) =
(-Q@ > ~P)).

PlQI-P|-Q|(PDQ)|(-Q@D~P) | (PDQ)=(-QD~P))
FIF| T | T T T T
F T T|F T T T
TIF| F | T F F T
TIT|F | F T T T

Since the last column contains only the truth value T, the proposition
A is a tautology.

The above method for testing whether a proposition is satisfiable or a
tautology is computationally expensive, in the sense that it takes an exponen-
tial number of steps. One might ask if it is possible to find a more efficient
procedure. Unfortunately, the satisfiability problem happens to be what is
called an N P-complete problem, which implies that there is probably no fast
algorithm for deciding satisfiability. By a fast algorithm, we mean an algo-
rithm that runs in a number of steps bounded by p(n), where n is the length
of the input, and p is a (fixed) polynomial. N P-complete problems and their
significance will be discussed at the end of this section.

Is there a better way of testing whether a proposition A is a tautology
than computing its truth table (which requires computing at least 2™ entries,
where n is the number of proposition symbols occurring in A)? One possibility

3.3 Semantics of Propositional Logic 45

is to work backwards, trying to find a truth assignment which makes the
proposition false. In this way, one may detect failure much earlier. This is
the essence of Gentzen systems to be discussed shortly.

As we said at the beginning of Section 3.3, every proposition defines a
function taking truth values as arguments, and yielding truth values as results.
The truth function associated with a proposition is defined as follows.

3.3.3 Truth Functions and Functionally Complete Sets
of Connectives

We now show that the logical connectives are not independent. For this, we

need to define what it means for a proposition to define a truth function.

Definition 3.3.5 Let A be a formula containing exactly n distinct propo-
sitional symbols. The function H4 : BOOL™ — BOOL is defined such that,
for every (a1, ...,a,) € BOOL"™,

Hy(aq,...,a,) =0(A),
with v any valuation such that v(P;) = a; for every propositional symbol P;

occurring in A.

For simplicity of notation we will often name the function H4 as A. H 4
is a truth function. In general, every function f: BOOL™ — BOOL is called
an n-ary truth function.

EXAMPLE 3.3.4

The proposition
A=(PN=Q)V (-PAQ)

defines the truth function Hg given by the following truth table:

P[Q[-P[-Q[(PA-Q[(~PAQ) [(PA-Q)V (~PAQ))
FIF| T | T F F F
F|IT T)|F F T T
TIF| F | T T F T
T|IT| F | F F F F

Note that the function Hg, takes the value T if and only if its arguments
have different truth values. For this reason, it is called the ezclusive OR
function.

It is natural to ask whether every truth function f can be realized by
some proposition A, in the sense that f = H4. This is indeed the case. We say
that the boolean connectives form a functionally complete set of connectives.

46 3/Propositional Logic

The significance of this result is that for any truth function f of n arguments,
we do not enrich the collection of assertions that we can make by adding a
new symbol to the syntax, say F', and interpreting F' as f. Indeed, since f
is already definable in terms of V, A, =, D, =, every extended proposition
A containing F' can be converted to a proposition A’ in which F does not
occur, such that for every valuation v, ¥(A) = ©(A’). Hence, there is no
loss of generality in restricting our attention to the connectives that we have
introduced. In fact, we shall prove that each of the sets {V, =}, {A, =}, {D, -}
and {D, 1} is functionally complete.

First, we prove the following two lemmas.

Lemma 3.3.3 Let A and B be any two propositions, let { P4, ..., P, } be the
set of propositional symbols occurring in (A = B), and let H4 and Hg be the
functions associated with A and B, considered as functions of the arguments
in {Py,..., P,}. The proposition (A = B) is a tautology if and only if for all
valuations v, 9(A) = v(B), if and only if Hy = Hp.

Proof: For any valuation v,
B((A = B)) = H-(3(A), 5(B)).
Consulting the truth table for H=, we see that
v((A=B))=T ifand only if ©(A)=7v(B).

By lemma 3.3.1 and definition 3.3.5, this implies that H4 = Hg. [J

By constructing truth tables, the propositions listed in lemma 3.3.4 be-
low can be shown to be tautologies.

Lemma 3.3.4 The following properties hold:

(A= B) = ((A> B)A (B > A)); (1)
= (A> B) = (~AV B); (2)
= (AV B) = (-A > B); (3)
= (AV B) = ~(=A A —B); (4)
= (AAB) = ~(=AV -B); (5)
= —A=(45L); (6)

=Ll =(AA-A) (7)

Proof: We prove (1), leaving the other cases as an exercise. By lemma
3.3.3, it is sufficient to verify that the truth tables for (A = B) and ((A D
B) A (B D A)) are identical.

3.3 Semantics of Propositional Logic 47

A B | A>B | BoA | (A=B) | (A>B)A(BD A)
F | F T T T T
F | T T F F F
T | F F T F F
T | T T T T T

Since the columns for (A = B) and ((A D B) A (B D A)) are identical,
(1) is a tautology. O

We now show that {V, A, =} is a functionally complete set of connectives.
Theorem 3.3.1 For every n-ary truth function f, there is a proposition A
only using the connectives A, V and — such that f = Ha.

Proof: We proceed by induction on the arity n of f. For n = 1, there
are four truth functions whose truth tables are:

P 1 2 3 4
F T F F T
T T F T F

Clearly, the propositions PV —-P, P A—P, P and =P do the job. Let f
be of arity n 4+ 1 and assume the induction hypothesis for n. Let

f1($17"'7xn) :f(x17~-~7.')3n,T) and
fa(xr, ooy wp) = f(x1, .0 20, F).

Both f; and f; are n-ary. By the induction hypothesis, there are propositions
B and C such that
fi=Hp and fy=Hc.

But then, letting A be the formula
(Past A B)V (=Pas1 A C),

where P, ;1 occurs neither in B nor C, it is easy to see that f = H4. O

Using lemma 3.3.4, it follows that {Vv,—=}, {A,=}, {D,-} and {D, L}
are functionally complete. Indeed, using induction on propositions, A can be
expressed in terms of V and — by (5), D can be expressed in terms of — and V
by (2), = can be expressed in terms of D and A by (1), and L can be expressed
in terms of A and = by (7). Hence, {V, -} is functionally complete. Since V
can be expressed in terms of A and — by (4), the set {A,—} is functionally
complete, since {V, -} is. Since V can be expressed in terms of D and — by
(3), the set {D,~} is functionally complete, since {V, -} is. Finally, since -

48 3/Propositional Logic

can be expressed in terms of D and L by (6), the set {D, L} is functionally
complete since {D, —} is.

In view of the above theorem, we may without loss of generality restrict
our attention to propositions expressed in terms of the connectives in some
functionally complete set of our choice. The choice of a suitable functionally
complete set of connectives is essentially a matter of convenience and taste.
The advantage of using a small set of connectives is that fewer cases have to
be considered in proving properties of propositions. The disadvantage is that
the meaning of a proposition may not be as clear for a proposition written in
terms of a smaller complete set, as it is for the same proposition expressed
in terms of the full set of connectives used in definition 3.2.1. Furthermore,
depending on the set of connectives chosen, the representations can have very
different lengths. For example, using the set {D, L}, the proposition (A A B)
takes the form

(AD>(BD1))>L.

I doubt that many readers think that the second representation is more per-
spicuous than the first!

In this book, we will adopt the following compromise between mathe-
matical conciseness and intuitive clarity. The set {A,V,—, D} will be used.
Then, (A = B) will be considered as an abbreviation for ((A D B)A(B D A)),
and L as an abbrevation for (P A —P).

We close this section with some results showing that the set of propo-
sitions has a remarkable structure called a boolean algebra. (See Subsection
2.4.1 in the Appendix for the definition of an algebra.)

3.3.4 Logical Equivalence and Boolean Algebras

First, we show that lemma 3.3.3 implies that a certain relation on PROP is
an equivalence relation.

Definition 3.3.6 The relation ~ on PROP is defined so that for any two
propositions A and B, A ~ B if and only if (A = B) is a tautology. We say
that A and B are logically equivalent, or for short, equivalent.

From lemma 3.3.3, A ~ B if and only if H4 = Hg. This implies that
the relation ~ is reflexive, symmetric, and transitive, and therefore it is an
equivalence relation. The following additional properties show that it is a
congruence in the sense of Subsection 2.4.6 (in the Appendix).

Lemma 3.3.5 For all propositions A,A’,B,B’, the following properties hold:
If A~ A" and B~ B’, then for x € {A,V,D,=},

(A% B)~ (A"« B') and
—A ~ —\AI.

3.3 Semantics of Propositional Logic 49

Proof: By definition 3.3.6,
(A*B)~ (A"« B') ifand only if | (AxB)=(A"xB).
By lemma 3.3.3, it is sufficient to show that for all valuations v,
U(A* B) =0(A"x B').
Since
A~A" and B~ B implies that
9(A) =0(A") and ¥(B)=79(B"),
we have
(A x B) = H,(0(A),9(B)) = H,(0(A"),9(B") =0(A" « B).
Similarly,
B(=A) = Ho(3(4)) = H-(5(A")) = 5(~A"),
O

In the rest of this section, it is assumed that the constant symbol T
is added to the alphabet of definition 3.2.1, yielding the set of propositions
PROP’, and that T is interpreted as T. The proof of the following properties
is left as an exercise.

Lemma 3.3.6 The following properties hold for all propositions in PROP’.

Associativity rules:
(AVB)VC)~(Av(BVC)) ((AAB)AC)=(AN(BAC))
Commutativity rules:
(AvB)~(BVA) (AANB)~(BAA)
Distributivity rules:

(AV(BANC)) = ((AVB)A(AV())
(ANBVCO)~(AANB)V(ANC))

De Morgan’s rules:
-(AVB)~(-AAN-B) —(AAB)~(-AV-B)
Idempotency rules:

(AVA)~A (ANA)~A
Double negation rule:

—A~A
Absorption rules:
(AV(AANB))~A (AN(AVB))~A
Laws of zero and one:

(Av L)~ A (AN 1) ~1
(AVT)~T (AAT)~A
(AV-A)~T (AAN-A) =1

50 3/Propositional Logic

Let us denote the equivalence class of a proposition A modulo ~ as [4],
and the set of all such equivalence classes as Bprop. We define the operations
+, x and - on Bprop as follows:

[A] +[B] = [AV B],
[A] « [B] = [A A B,
—[A] = [~4].

Also, let 0 =[L] and 1 = [T].

By lemma 3.3.5, the above functions (and constants) are independent of
the choice of representatives in the equivalence classes. But then, the proper-
ties of lemma 3.3.6 are identities valid on the set B prop of equivalence classes
modulo ~. The structure Bprop is an algebra in the sense of Subsection 2.4.1
(in the Appendix). Because it satisfies the identities of lemma 3.3.6, it is a
very rich structure called a boolean algebra. B prop is called the Lindenbaum
algebra of PROP. In this book, we will only make simple uses of the fact
that Bprop is a boolean algebra (the properties in lemma 3.3.6, associativity,
commutativity, distributivity, and idempotence in particular) but the reader
should be aware that there are important and interesting consequences of this
fact. However, these considerations are beyond the scope of this text. We
refer the reader to Halmos, 1974, or Birkhoff, 1973 for a comprehensive study
of these algebras.

3.3.5 NP-Complete Problems

It has been remarked earlier that both the satisfiability problem (SAT') and
the tautology problem (TTAUT) are computationally hard problems, in the
sense that known algorithms to solve them require an exponential number of
steps in the length of the input. Even though modern computers are capable
of performing very complex computations much faster than humans can, there
are problems whose computational complexity is such that it would take too
much time or memory space to solve them with a computer. Such problems are
called intractable. It should be noted that this does not mean that we do not
have algorithms to solve such problems. This means that all known algorithms
solving these problems in theory either require too much time or too much
memory space to solve them in practice, except perhaps in rather trivial cases.
An algorithm is considered intractable if either it requires an exponential
number of steps, or an exponential amount of space, in the length of the
input. This is because exponential functions grow very fast. For example,
210 — 1024, but 2109 is equal to 10100009102 which has over 300 digits!
A problem that can be solved in polynomial time and polynomial space is
considered to be tractable.

It is not known whether SAT or TAUT are tractable, and in fact, it is
conjectured that they are not. But SAT and TAUT play a special role for

3.3 Semantics of Propositional Logic 51

another reason. There is a class of problems (NP) which contains
problems for which no polynomial-time algorithms are known, but for which
polynomial-time solutions exist, if we are allowed to make guesses, and if we
are not charged for checking wrong guesses, but only for successful guesses
leading to an answer. S AT is such a problem. Indeed, given a proposition A, if
one is allowed to guess valuations, it is not difficult to design a polynomial-time
algorithm to check that a valuation v satisfies A. The satisfiability problem
can be solved nondeterministically by guessing valuations and checking that
they satisfy the given proposition. Since we are not “charged” for checking
wrong guesses, such a procedure works in polynomial-time.

A more accurate way of describing such algorithms is to say that free
backtracking is allowed. If the algorithm reaches a point where several choices
are possible, any choice can be taken, but if the path chosen leads to a dead
end, the algorithm can jump back (backtrack) to the latest choice point,
with no cost of computation time (and space) consumed on a wrong path
involved. Technically speaking, such algorithms are called nondeterministic.
A nondeterministic algorithm can be simulated by a deterministic algorithm,
but the deterministic algorithm needs to keep track of the nondeterministic
choices explicitly (using a stack), and to use a backtracking technique to
handle unsuccessful computations. Unfortunately, all known backtracking
techniques yield exponential-time algorithms.

In order to discuss complexity issues rigorously, it is necessary to define
a model of computation. Such a model is the Turing machine (invented by
the mathematician Turing, circa 1935). We will not present here the theory
of Turing Machines and complexity classes, but refer the interested reader to
Lewis and Papadimitriou, 1981, or Davis and Weyuker, 1983. We will instead
conclude with an informal discussion of the classes P and NP.

In dealing with algorithms for solving classes of problems, it is conve-
nient to assume that problems are encoded as sets of strings over a finite
alphabet 3. Then, an algorithm for solving a problem A is an algorithm for
deciding whether for any string u € X*, u is a member of A. For example,
the satisfiability problem is encoded as the set of strings representing satisfi-
able propositions, and the tautology problem as the set of strings representing
tautologies.

A Turing machine is an abstract computing device used to accept sets
of strings. Roughly speaking, a Turing machine M consists of a finite set of
states and of a finite set of instructions. The set of states is partitioned into
two subsets of accepting and rejecting states.

To explain how a Turing machine operates, we define the notion of an
instantaneous description (ID) and of a computation. An instantaneous de-
scription is a sort of snapshot of the configuration of the machine during a
computation that, among other things, contains a state component. A Turing
machine operates in discrete steps. Every time an instruction is executed, the
ID describing the current configuration is updated. The intuitive idea is that

52 3/Propositional Logic

executing an instruction I when the machine is in a configuration described by
an instantaneous description C7 yields a new configuration described by Cs.
A computation is a finite or infinite sequence of instantaneous descriptions
Co,...,Cy (or Co,...,Cp,Cpi1, ..., if it is infinite), where Cj is an initial in-
stantaneous description containing the input, and each C;; is obtained from
C; by application of some instruction of M. A finite computation is called
a halting computation, and the last instantaneous description C,, is called a
final instantaneous description.

A Turing machine is deterministic, if for every instantaneous description
(1, at most one instantaneous description C5 follows from C; by execution of
some instruction of M. It is nondeterministic if for any I'D C1, there may be
several successors Co obtained by executing (different) instructions of M.

Given a halting computation Cy, ..., Cy, if the final ID C,, contains an
accepting state, we say that the computation is an accepting computation,
otherwise it is a rejecting computation.

A set A (over X) is accepted deterministically in polynomial time if there
is a deterministic Turing machine M and a polynomial p such that, for every
input u,

(i) u € A iff the computation Cy,...,C,, on input u is an accepting
computation such that n < p(|u|) and,

(ii) u ¢ A iff the computation Cy, ...,C,, on input u is a rejecting com-
putation such that n < p(|ul).

A set A (over X) is accepted nondeterministically in polynomial time if
there is a nondeterministic Turing machine M and a polynomial p, such that,
for every input u, there is some accepting computation Cy, ..., C,, such that

n < p(|ul).

It should be noted that in the nondeterministic case, a string u is rejected
by a Turing machine M (that is, u ¢ A) iff every computation of M is either a
rejecting computation Cy, ..., C,, such that n < p(Jul), or a computation that
takes more than p(|u|) steps on input u.

The class of sets accepted deterministically in polynomial time is denoted
by P, and the class of sets accepted nondeterministically in polynomial time
is denoted by NP. It is obvious from the definitions that P is a subset of
NP. However, whether P = NP is unknown, and in fact, is a famous open
problem.

The importance of the class P resides in the widely accepted (although
somewhat controversial) opinion that P consists of the problems that can
be realistically solved by computers. The importance of NP lies in the fact
that many problems for which efficient algorithms would be highly desirable,
but are yet unknown, belong to NP. The traveling salesman problem and
the integer programming problem are two such problems among many others.

3.3 Semantics of Propositional Logic 53

For an extensive list of problems in N P, the reader should consult Garey and
Johnson, 1979.

The importance of the satisfiability problem SAT is that it is NP-
complete. This implies the remarkable fact that if SAT is in P, then P = N P.
In other words, the existence of a polynomial-time algorithm for SAT implies
that all problems in NP have polynomial-time algorithms, which includes
many interesting problems apparently untractable at the moment.

In order to explain the notion of N P-completeness, we need the concept
of polynomial-time reducibility. Deterministic Turing machines can also be
used to compute functions. Given a function f : ¥* — X*, a deterministic
Turing machine M computes f if for every input u, there is a halting com-
putation Cy, ..., C,, such that Cy contains u as input and C,, contains f(u) as
output. The machine M computes f in polynomial time iff there is a polyno-
mial p such that, for every input u, n < p(|ul|), where n is the number of steps
in the computation on input u. Then, we say that a set A is polynomially re-
ducible to a set B if there is a function f : ¥* — ¥* computable in polynomial
time such that, for every input w,

ue A ifand only if f(u) € B.

A set B is NP-hard if every set A in NP is reducible to B. A set B is
NP-complete if it is in NP, and it is NP-hard.

The significance of N P-complete problems lies in the fact that if one
finds a polynomial time algorithm for any N P-complete problem B, then
P = NP. Indeed, given any problem A € NP, assuming that the determin-
istic Turing machine M solves B in polynomial time, we could construct a
deterministic Turing machine M’ solving A as follows. Let My be the deter-
ministic Turing machine computing the reduction function f. Then, to decide
whether any arbitrary input u is in A, run My on input u, producing f(u),
and then run M on input f(u). Since u € A if and ouly if f(u) € B, the above
procedure solves A. Furthermore, it is easily shown that a deterministic Tur-
ing machine M’ simulating the composition of My and M can be constructed,
and that it runs in polynomial time (because the functional composition of
polynomials is a polynomial).

The importance of SAT lies in the fact that it was shown by S. A. Cook
(Cook, 1971) that SAT is an N P-complete problem. In contrast, whether
TAUT is in NP is an open problem. But TAUT is interesting for two other
reasons. First, it can be shown that if TAUT is in P, then P = NP. This
is unlikely since we do not even know whether TAUT is in NP. The second
reason is related to the closure of NP under complementation. NP is said to
be closed under complementation iff for every set A in NP, its complement
¥* — Aisalsoin NP.

The class P is closed under complementation, but this is an open prob-
lem for the class NP. Given a deterministic Turing machine M, in order to

54 3/Propositional Logic

accept the complement of the set A accepted by M, one simply has to create
the machine M obtained by swapping the accepting and the rejecting states of
M. Since for every input u, the computation Cy, ..., C,, of M on input u halts
in n < p(|u|) steps, the modified machine M accepts ¥* — A is polynomial
time. However, if M is nondeterministic, M may reject some input u because
all computations on input u exceed the polynomial time bound p(|u|). Thus,
for this input u, there is no computation of the modified machine M which
accepts u within p(|u|) steps. The trouble is not that M cannot tell that u is
rejected by M, but that M cannot report this fact in fewer than p(|u|) steps.
This shows that in the nondeterministic case, a different construction is re-
quired. Until now, no such construction has been discovered, and is rather
unlikely that it will. Indeed, it can be shown that TAUT is in NP if and only
if NP is closed under complementation. Furthermore, since P is closed under
complementation if VP is not closed under complementation, then NP # P.

Hence, one approach for showing that NP # P would be to show that
TAUT is not in NP. This explains why a lot of effort has been spent on the
complexity of the tautology problem.

To summarize, the satisfiability problem S AT and the tautology problem
TAUT are important because of the following facts:

SAT € P ifand only if P = NP;
TAUT € NP if and only if NP is closed under complementation;
If TAUT € P, then P = NP,
If TAUT ¢ NP, then NP # P.

Since the two questions P = NP and the closure of NP under comple-
mentation appear to be very hard to solve, and it is usually believed that their
answer is negative, this gives some insight to the difficulty of finding efficient
algorithms for SAT and TAUT. Also, the tautology problem appears to be
harder than the satisfiability problem. For more details on these questions,
we refer the reader to the article by S. A. Cook and R. A. Reckhow (Cook
and Reckhow, 1971).

PROBLEMS

3.3.1. In this problem, it is assumed that the language of propositional logic
is extended by adding the constant symbol T, which is interpreted as
T. Prove that the following propositions are tautologies by construct-
ing truth tables.

Associativity rules:

(AvB)vC)=(Av(BVC(C)) ((AANB)ANC)=(AN(BACQC))

PROBLEMS 55

Commutativity rules:
(AvB)=(BVA) (AANB)=(BAA)
Distributivity rules:
(AV(BAC)=((AVB)A(AV (D))
(AN(BVC)=((AAB)V(AANQ))
De Morgan’s rules:
-~(AvB)=(-AA-B) —(AAB)=(-AV-B)
Idempotency rules:
(AVA)=A (ANA)=A
Double negation rule:
—A=A
Absorption rules:
(AV(AANB)=A (AN(AVvB))=A
Laws of zero and one:

(Av L)=A (AA1)=L
(AvT)=T (AAT)=A
(AV-A)=T (AAN-A) =L

3.3.2. Show that the following propositions are tautologies.

AD(BDA)
(ADB)D((AD(BD>(C)D(ADQ))
AD(BD>(AAB))
AD(AV B) B> (AVB)
(ADB)D((AD-B)D>-A)
(ANB)D A (ANB)D B
(ADC)D>((BD>C)D((AvB)> ()
-—ADA

3.3.3. Show that the following propositions are tautologies.
(ADB)D((BD>A) D (A=DB))
(A=B)D>(ADB)
(A=B)D>(BDA)

3.3.4. Show that the following propositions are not tautologies. Are they

satisfiable? If so, give a satisfying valuation.

(ADC)D((BoD)D>((AvB)D> ()
(ADB)D((BD>-C)D>-A)

56

3.3.5.
* 3.3.6.

* 3.3.7.

* 3.3.8.

* 3.3.9.

3/Propositional Logic
Prove that the propositions of lemma 3.3.4 are tautologies.

Given a function f of m arguments and m functions g1, ..., g, each
of n arguments, the composition of f and g1, ..., g, is the function h
of n arguments such that for all z1, ..., z,,

hxy, ooy xn) = f(g1(x1, s Tn), eoey G (X1, oy).

For every integer n > 1, we let P/, (1 <4 < n), denote the projection
function such that, for all x1, .., z,,

‘Pin(xlv 71'71) = Ty

Then, given any k truth functions Hy, ..., Hg, let TF,, be the inductive
closure of the set of functions {Hj, ..., Hg, P{, ..., P} under compo-
sition. We say that a truth function H of n arguments is definable
from Hy, ..., Hy if H belongs to TF,,.

Let Hy, be the n-ary truth function such that
Hyn(z1,...;2n) =F ifandonlyif z;=..=2z,=F,
and H, , the n-ary truth function such that

Hepn(z1,...;zp) =T ifand only if z; =..=x,="T.

(i) Prove that every n-ary truth function is definable in terms of H_,
and some of the functions Hy , He p.

(ii) Prove that H- is not definable in terms of Hy, Hx, H~, and H=.
Let H,,- be the binary truth function such that

Hnor(fﬂ, y) =T if and only if = Yy = F.

Show that H,,- = Ha, where A is the proposition (=P A —Q). Show
that {Hyor} is functionally complete.

Let Hpana be the binary truth function such that H,ana(z,y) = F
if and only if x+ = y = T. Show that H,4.g = Hp, where B is the
proposition (—P V —=Q). Show that {Hyqnq} is functionally complete.

An n-ary truth function H is singulary if there is a unary truth
function H’ and some 7, 1 < ¢ < n, such that for all zq,...,z,,
H(xy,...,xpn) = H' (x;).

(i) Prove that if H is singulary, then every m-ary function definable
in terms of H is also singulary. (See problem 3.3.6.)

PROBLEMS 57

3.3.10.

3.3.11.

3.3.12.

3.3.13.

(ii) Prove that if H is a binary truth function and {H} is functionally
complete, then either H = H,,, or H = Hy004-

Hint: Show that H(T,T) = F and H(F,F) = T, that only four
binary truth functions have that property, and use (i).

A substitution is a function s : PS — PROP. Since PROP is freely
generated by PS and 1, every substitution s extends to a unique
function s : PROP — PROP defined by recursion. Let A be any
proposition containing the propositional symbols {Px, ..., P,}, and s;
and sz be any two substitutions such that for every P; € {Py, ..., P, },
the propositions s1(F;) and so(F;) are equivalent (that is s1(P;) =
s2(P;) is a tautology).

Prove that the propositions §1(A) and 52(A) are equivalent.

Show that for every set I' of propositions,

(i))T,AE B ifandonlyif T (A D B);
(@) If TVAEDB and T'yAE-B, then T | —4;
(i) If T,A=C and T,BEC, then T,(AVB)E C.

Assume that we consider propositions expressed only in terms of the
set of connectives {V, A, —}. The dual of a proposition A, denoted by
A* is defined recursively as follows:

P* = P, for every propositional symbol P;
(AV B)* = (A" A BY);
(AANB)* = (A" V BY);
(mA)" =-A".

(a) Prove that, for any two propositions A and B,

FEA=B ifandonlyif | A*=B".

(b) If we change the definition of A* so that for every propositional
letter P, P* = =P, prove that A* and —A are logically equivalent
(that is, (A* = —A) is a tautology).

A literal is either a propositional symbol P, or the negation —P of a
propositional symbol. A proposition A is in disjunctive normal form
(DNF) if it is of the form C; V...V C,,, where each C; is a conjunction
of literals.

(i) Show that the satisfiability problem for propositions in DNF can
be decided in linear time. What does this say about the complexity

58

* 3.3.14.

* 3.3.15.

* 3.3.16.

3/Propositional Logic

of any algorithm for converting a proposition to disjunctive normal
form?

(ii) Using the proof of theorem 3.3.1 and some of the identities of
lemma 3.3.6, prove that every proposition A containing n proposi-
tional symbols is equivalent to a proposition A’ in disjunctive normal
form, such that each disjunct C; contains exactly n literals.

Let Hg be the truth function defined by the proposition

(PA-Q)V (P AQ).

(i) Prove that @ (ezclusive OR) is commutative and associative.

(ii) In this question, assume that the constant for false is denoted
by 0 and that the constant for true is denoted by 1. Prove that the
following are tautologies.

AVB=ANB3&AGB

A=Al

A=A

A A=0

AN1=A

ANA=A
ANB®C)=ANBaANC

ANO=0

(iii) Prove that {&, A, 1} is functionally complete.

Using problems 3.3.13 and 3.3.14, prove that every proposition A is
equivalent to a proposition A’ which is either of the form 0, 1, or
Ci1 & ... ¢ C),, where each C; is either 1 or a conjunction of positive
literals. Furthermore, show that A’ can be chosen so that the C; are
distinct, and that the positive literals in each C; are all distinct (such
a proposition A’ is called a reduced exclusive-OR normal form,).

(i) Prove that if A’ and A” are reduced exclusive-OR normal forms of
a same proposition A, then they are equal up to commutativity, that
is:

Either A'=A"=0, or A’ =A4" =1, or
A'=C/N..NC,, A'=C{N..ANCV,

where each C] is a permutation of some C' (and conversely).

Hint: There are 22" truth functions of n arguments.

PROBLEMS 59

* 3.3.17.

* 3.3.18.

(ii) Prove that a proposition is a tautology if and only if its re-
duced exclusive-OR normal form is 1. What does this say about the
complexity of any algorithm for converting a proposition to reduced
exclusive-OR normal form?

A set I' of propositions is independent if, for every A € T,

I — {A} £ A.

(a) Prove that every finite set I" has a finite independent subset A
such that, for every A € ', A = A.

(b) Let T be ordered as the sequence < Ay, A, >. Find a sequence
IV =< By, Ba, ... > equivalent to T' (that is, for every i > 1, T | B;
and IV = A;), such that, for every ¢ > 1, E (B;41 D B;), but
= (B; D Bi+1). Note that TV may be finite.

(¢) Consider a countable sequence I as in (b). Define C; = By, and
for every ¢ > 1, C,,11 = (B,, D Bj41). Prove that A =< C1,Cs, ... >
is equivalent to IV and independent.

(d) Prove that every countable set I' is equivalent to an independent
set.

(e) Show that A need not be a subset of T'.
Hint: Consider

{Py, Py ANP,,Py NP, A Py,..}.

See problem 3.3.13 for the definition of a literal. A proposition A is
a basic Horn formula iff it is a disjunction of literals, with at most
one positive literal (literal of the form P). A proposition is a Horn
formula iff it is a conjunction of basic Horn formulae.

(a) Show that every Horn formula A is equivalent to a conjunction of
distinct formulae of the form,

P;, or
P V..V-P, (n>1), or
—|P1\/....\/—|Pn\/Pn+1,(n21),

where all the P; are distinct. We say that A is reduced.

(b) Let A be a reduced Horn formula A = C; A Cy A ... A C,,, where
the C; are distinct and each C; is reduced as in (a). Since V is
commutative and associative (see problem 3.3.1), we can view each
conjunct C; as a set.

60 3/Propositional Logic

(i) Show that if no conjunct C; is a positive literal, or every conjunct
containing a negative literal also contains a positive literal, then A is
satisfiable.

(ii) Assume that A contains some conjunct C; having a single posi-
tive literal P, and some conjunct C; distinct from Cj, such that C;
contains =P. Let D, ; be obtained by deleting =P from C;. Let A’
be the conjunction obtained from A by replacing C; by the conjunct
D; ;, provided that D; ; is not empty.

Show that A is satisfiable if and only if A’ is satisfiable and D, ; is
not empty.

R

(iii) Using the above, prove that the satisfiability of a Horn formula
A can be decided in time polynomial in the length of A.

Note: Linear-time algorithms are given in Dowling and Gallier, 1984.

3.4 Proof Theory of Propositional Logic: The Gentzen
System G’

In this section, we present a proof system for propositional logic and prove
some of its main properties: soundness and completeness.

3.4.1 Basic Idea: Searching for a Counter Example

As we have suggested in Section 3.3, another perhaps more effective way of
testing whether a proposition A is a tautology is to search for a valuation
that falsifies A. In this section, we elaborate on this idea. As we progress
according to this plan, we will be dealing with a tree whose nodes are la-
beled with pairs of finite lists of propositions. In our attempt to falsify A, the
tree is constructed in such a way that we are trying to find a valuation that
makes every proposition occurring in the first component of a pair labeling
a node true, and all propositions occurring in the second component of that
pair false. Hence, we are naturally led to deal with pairs of finite sequences
of propositions called sequents. The idea of using sequents originates with
Gentzen, although Gentzen’s motivations were quite different. A proof sys-
tem using sequents is very natural because the rules reflect very clearly the
semantics of the connectives. The idea of searching for a valuation falsifying
the given proposition is simple, and the tree-building algorithm implementing
this search is also simple. Let us first illustrate the falsification procedure by
means of an example.

EXAMPLE 3.4.1

Let
A=(PDQ)D(-Q D~P).

3.4 Proof Theory of Propositional Logic: The Gentzen System G’ 61

Initially, we start with a one-node tree labeled with the pair
(<>, <(P2Q)D(=Q > ~P)>)

whose first component is the empty sequence and whose second compo-
nent is the sequence containing the proposition A that we are attempt-
ing to falsify. In order to make A false, we must make P D @ true and
=@ D —P false. Hence, we build the following tree:

(< PDOQ><-Q>D-P>)
(<> <(PD2Q)D (@D ~P)>)

Now, in order to make P D () true, we must either make P false or @)
true. The tree must therefore split as shown:

(<>,< P,m~Q D> —-P>) (<Q><-QD-P>)

(< PD>Q><-QD-P>)

(<> <(PD2Q)D(-Q@>D~P)>)
We continue the same procedure with each leaf. Let us consider the
leftmost leaf first. In order to make =@ D —P false, we must make —(Q)

true and —P false. We obtain the tree:

(< =Q >,< P,—P >)

(<>, < P,~Q D P >) (< Q>,<-QD-P>)

(<PD>Q><—-QD-P>)

(<>,<(PDQ)D(—Q D —P)>)

But now, in order to falsify the leftmost leaf, we must make both P and
=P false and =@ true. This is impossible. We say that this leaf of the
tree is closed. We still have to continue the procedure with the rightmost
leaf, since there may be a way of obtaining a falsifying valuation this
way. To make =) D —P false, we must make —(Q true and —P false,
obtaining the tree:

(<ﬁQ>7<P>ﬁP>) (<Q>ﬁQ>a<ﬁP>)

(<>, < P,=Q D —P >) (<Q>,<-QD-P>)

(< PDQ><-Q>D-P>)

(<>, < (PDQ)D(—Q D-P)>)

62 3/Propositional Logic

This time, we must try to make —P false and both @) and —Q false,
which is impossible. Hence, this branch of the tree is also closed, and
our attempt to falsify A has failed. However, this failure to falsify A is
really a success, since, as we shall prove shortly, this demonstrates that
A is valid!

Trees as above are called deduction trees. In order to describe precisely
the algorithm we have used in our attempt to falsify the proposition A, we
need to state clearly the rules that we have used in constructing the tree.

3.4.2 Sequents and the Gentzen System G’

First, we define the notion of a sequent.

Definition 3.4.1 A sequent is a pair (I, A) of finite (possibly empty) se-
quences I' =< A1, ..., A, >, A =< By, ..., B, > of propositions.

Instead of using the notation (I',A), a sequent is usually denoted as
I' — A. For simplicity, a sequence < Ay, ..., A, > is denoted as Ay, ..., A,.
If T is the empty sequence, the corresponding sequent is denoted as — A; if
A is empty, the sequent is denoted as I' — . and if both I' and A are empty,
we have the special sequent — (the inconsistent sequent). T is called the
antecedent and A the succedent.

The intuitive meaning of a sequent is that a valuation v makes a sequent
Ay, ..., Ay — By, ..., B, true iff

vE (A1 AN ANAR) D(BLV...VBy,).

Equivalently, v makes the sequent false if v makes Aj,..., A,, all true and
By, ..., B, all false.

It should be noted that the semantics of sequents suggests that instead
of using sequences, we could have used sets. We could indeed define sequents
as pairs (I, A) of finite sets of propositions, and all the results in this section
would hold. The results of Section 3.5 would also hold, but in order to present
the generalization of the tree construction procedure, we would have to order
the sets present in the sequents anyway. Rather than switching back and forth
between sets and sequences, we think that it is preferable to stick to a single
formalism. Using sets instead of sequences can be viewed as an optimization.

The rules operating on sequents fall naturally into two categories: those
operating on a proposition occurring in the antecedent, and those on a propo-
sition occurring in the succedent. Both kinds of rules break the proposition
on which the rule operates into subpropositions that may also be moved from
the antecedent to the succedent, or vice versa. Also, the application of a rule
may cause a sequent to be split into two sequents. This causes branching in
the trees. Before stating the rules, let us mention that it is traditional in logic
to represent trees with their root at the bottom instead of the root at the

3.4 Proof Theory of Propositional Logic: The Gentzen System G’ 63

top as it is customary in computer science. The main reason is that a tree
obtained in failing to falsify a given proposition can be viewed as a formal
proof of the proposition. The proposition at the root of the tree is the logical
conclusion of a set of inferences, and it is more natural to draw a proof tree in
such a way that each premise in a rule occurs above its conclusion. However,
this may be a matter of taste (and perhaps, aesthetics).

In the rest of this section, it will be assumed that the set of connectives
used is {A, V, D, —}, and that (A = B) is an abbreviation for (A D B)A (B D
A), and L an abbreviation for (P A —=P).

Definition 3.4.2 The Gentzen system G’. The symbols ', A, A will be used
to denote arbitrary sequences of propositions and A, B to denote propositions.
The inference rules of the sequent calculus G’ are the following:

I'A,B,A — A (A left) ' -AA A T —A,BA (A right)

T,LANB,A - A V0 T - AAABA g

DAASA DBA=A o DoAABA
T,LAVB,A = A Y T A AvBA Y

A—AAN BT, A—A AT — B,AA o
TASBAA e s R a5pa Orraht)
DA AN AT AN

The name of every rule is stated immediately to its right. Every rule
consists of one or two upper sequents called premises and of a lower sequent
called the conclusion. The above rules are called inference rules. For ev-
ery rule, the proposition to which the rule is applied is called the principal
formula, the propositions introduced in the premises are called the side for-
mulae, and the other propositions that are copied unchanged are called the
extra formulae.

Note that every inference rule can be represented as a tree with two
nodes if the rule has a single premise, or three nodes if the rule has two
premises. In both cases, the root of the tree is labeled with the conclusion of
the rule and the leaves are labeled with the premises. If the rule has a single
premise, it is a tree of the form

1) S

(e) Sz

64 3/Propositional Logic

where the premise labels the node with tree address 1, and the conclusion
labels the node with tree address e. If it has two premises, it is a tree of the
form

(1 2)

) S1 Sa (
AN
®

where the first premise labels the node with tree address 1, the second premise
labels the node with tree address 2, and the conclusion labels the node with
tree address e.

EXAMPLE 3.4.2

Consider the following instance of the D:left rule:

AB—PD QAB-—D
A, (P2>Q),B—D

In the above inference, (P D Q) is the principal formula, P and @ are
side formulae, and A, B, D are extra formulae.

A careful reader might have observed that the rules (D:left), (D:right),
(—:left), and (—:right) have been designed in a special way. Notice that the
side proposition added to the antecedent of an upper sequent is added at
the front, and similarly for the side proposition added to the succedent of an
upper sequent. We have done so to facilitate the generalization of the search
procedure presented below to infinite sequents.

We will now prove that the above rules achieve the falsification procedure
sketched in example 3.4.1.

3.4.3 Falsifiable and Valid Sequents

First, we extend the concepts of falsifiability and validity to sequents.

Definition 3.4.3 A sequent Aq,...,A,, — By,..., B, is falsifiable iff there
exists a valuation v such that

vE (A1 A ANAR) A (B Ao ABy).
A sequent as above is valid iff for every valuation v,
vE (A1 A ANAR) D (B1V...V By).
This is also denoted by

': Al, ceey Am — Bh ceey Bn

3.4 Proof Theory of Propositional Logic: The Gentzen System G’ 65

If m = 0, the sequent — By,..., B, is falsifiable iff the proposition
(—=B1 A ... A 0B,,) is satisfiable, valid iff the proposition (By V ... V B,,) is
valid. If n = 0, the sequent Aj,...,A,, — is falsifiable iff the proposition
(A1 A ... A Ay,) is satisfiable, valid iff the proposition (A; A ... A A,,) is not
satisfiable. Note that a sequent I' — A is valid if and only if it is not falsifiable.

Lemma 3.4.1 For each of the rules given in definition 3.4.2, a valuation v
falsifies the sequent occurring as the conclusion of the rule if and only if v
falsifies at least one of the sequents occurring as premises. Equivalently, v
makes the conclusion of a rule true if and only if v makes all premises of that
rule true.

Proof: The proof consists in checking the truth tables of the logical
connectives. We treat one case, leaving the others as an exercise. Consider
the (D:left) rule:

A —AA B, I';)A— A
I''(ADB),A— A

For every valuation v, v falsifies the conclusion if and only if v satisfies
all propositions in T" and A, and satisfies (A D B), and falsifies all propositions
in A. From the truth table of (4 D B), v satisfies (A D B) if either v falsifies
A, or v satisfies B. Hence, v falsifies the conclusion if and only if, either

(1) v satisfies " and A, and falsifies A and A, or
(2) v satisfies B, I" and A, and falsifies A. [J

3.4.4 Axioms, Deduction Trees, Proof Trees, Counter
Example Trees

The central concept in any proof system is the notion of proof. First, we

define the axioms of the system G’.

Definition 3.4.4 An aziom is any sequent I' — A such that ' and A
contain some common proposition.

Lemma 3.4.2 No axiom is falsifiable. Equivalently, every axiom is valid.

Proof: The lemma follows from the fact that in order to falsify an axiom,
a valuation would have to make some proposition true on the left hand side,
and that same proposition false on the right hand side, which is impossible.
O

Proof trees are given by the following inductive definition.

66 3/Propositional Logic

Definition 3.4.5 The set of proof trees is the least set of trees containing all
one-node trees labeled with an axiom, and closed under the rules of definition
3.4.2 in the following sense:

(1) For any proof tree T7 whose root is labeled with a sequent I' — A,
for any instance of a one-premise inference rule with premise I' — A and
conclusion A — O, the tree T" whose root is labeled with A — © and whose
subtree T'/1 is equal to T} is a proof tree.

(2) For any two proof trees 77 and T5 whose roots are labeled with
sequents I' — A and IV — A’ respectively, for every instance of a two-premise
inference rule with premises I' — A and I" — A’ and conclusion A — O, the
tree T whose root is labeled with A — © and whose subtrees T//1 and T/2
are equal to 77 and T respectively is a proof tree.

The set of deduction trees is defined inductively as the least set of trees
containing all one-node trees (not necessarily labeled with an axiom), and
closed under (1) and (2) as above.

A deduction tree such that some leaf is labeled with a sequent I' — A
where I', A consist of propositional letters and are disjoint is called a counter-
example tree. The sequent labeling the root of a proof tree (deduction tree) is
called the conclusion of the proof tree (deduction tree). A sequent is provable
iff there exists a proof tree of which it is the conclusion. If a sequent I' — A
is provable, this is denoted by

FT — A.

EXAMPLE 3.4.3

The deduction tree below is a proof tree.

Pa_'Q_>P Q_)Qv_'P
'Q>_'P3P ﬁQaQ_)_'P
HP,(ﬁQDﬁP) Q_)(ﬁQDﬁP>

(PD>Q)— (-Q D> ~P)
—(P2Q)D(=Q>~P)

The above tree is a proof tree obtained from the proof tree

P-Q—P Q—Q.-P
-Q— PP -Q.Q— P
~ P.(-Q>-P) Q—(-Q>-P)

(PDQ)— (-Q D ~P)

3.4 Proof Theory of Propositional Logic: The Gentzen System G’ 67

and the rule
(PD>Q)— (-Q>~P)

= (P>Q)D (@ >~P)

In contrast, the deduction tree below is a counter-example tree.

Q—P

Q,~P —
P—qQ m
- (P2Q) — (P> -Q)

—(P2OQ)A (=P D Q)

The above tree is obtained from the two counter-example trees

Q—P

Q,~P—
P—Q —|P——>ﬂQ
—(P2Q) — (=P D> -Q)

and the rule
— (P> Q) — (=P > -Q)

— (P2 Q)N (=P D> -Q)

It is easily shown that a deduction tree T is a proof tree if and only if
every leaf sequent of T is an axiom.

Since proof trees (and deduction trees) are defined inductively, the in-
duction principle applies. As an application, we now show that every provable
sequent is valid.

3.4.5 Soundness of the Gentzen System G’

Lemma 3.4.3 Soundness of the system G’. If a sequent I' — A is provable,
then it is valid.

Proof: We use the induction principle applied to proof trees. By lemma
3.4.2, every one-node proof tree (axiom) is valid. There are two cases in the
induction step.

Case 1: The root of the proof tree T has a single descendant. In this
case, T is obtained from some proof tree T7 and some instance of a rule
S1
Sy

68 3/Propositional Logic

By the induction hypothesis, S is valid. Since by Lemma 3.4.1, S is valid if
and only if S5 is valid, Lemma 3.4.3 holds.

Case 2: The root of the proof tree T has two descendants. In this case,
T is obtained from two proof trees T7 and 75 and some instance of a rule

S1 So
S3
By the induction hypothesis, both S; and S5 are valid. Since by lemma 3.4.1,
S3 is valid if and only if both S; and S, are, lemma 3.4.3 holds. [J

Next, we shall prove the fundamental theorem for the propositional se-
quent calculus G’. Roughly speaking, the fundamental theorem states that
there exists a procedure for constructing a candidate counter-example tree,
and that this procedure always terminates (is an algorithm). If the original
sequent is valid, the algorithm terminates with a tree which is in fact a proof
tree. Otherwise, the counter-example tree yields a falsifying valuation (in fact,
all falsifying valuations). The fundamental theorem implies immediately the
completeness of the sequent calculus G’.

3.4.6 The Search Procedure

The algorithm searching for a candidate counter-example tree builds this tree
in a systematic fashion. We describe an algorithm that builds the tree in
a breadth-first fashion. Note that other strategies for building such a tree
could be used, (depth-first, in particular). A breadth-first expansion strat-
egy was chosen because it is the strategy that works when we generalize the
search procedure to infinite sequents. We will name this algorithm the search
procedure.

Let us call a leaf of a tree finished iff the sequent labeling it is either an
axiom, or all propositions in it are propositional symbols. We assume that a
boolean function named finished testing whether a leaf is finished is available.
A proposition that is a propositional symbol will be called atomic, and other
propositions will be called nonatomic. A tree is finished when all its leaves
are finished.

The procedure search traverses all leaves of the tree from left to right as
long as not all of them are finished. For every unfinished leaf, the procedure
expand is called. Procedure expand builds a subtree by applying the appro-
priate inference rule to every nonatomic proposition in the sequent labeling
that leaf (proceeding from left to right). When the tree is finished, that is
when all leaves are finished, either all leaves are labeled with axioms or some
of the leaves are falsifiable. In the first case we have a proof tree, and in the
second, all falsifying valuations can be found.

Definition 3.4.6 Procedure search. The input to search is a one-node
tree labeled with a sequent I' — A. The output is a finished tree T called a
systematic deduction tree.

3.4 Proof Theory of Propositional Logic: The Gentzen System G’
Procedure Search

procedure search(I’ — A : sequent; var T : tree);
begin
let T be the one-node tree labeled with T — A;
while not all leaves of T are finished do
Ty :=1T;
for each leaf node of Ty
(in lexzicographic order of tree addresses) do
if not finished(node) then
expand(node, T)
endif
endfor
endwhile;
if all leaves are axioms
then
write (‘T is a proof of T — A’)
else
write (‘T' — A is falsifiable’)
endif
end

Procedure Expand

procedure expand(node : tree-address; var T : tree);

begin
let Ay, ..., Ap, — Bi,..., By be the label of node;
let S be the one-node tree labeled with
Al, ceey Am — Bl, ceey Bn,
for i :=1 to m do
if nonatomic(4;) then
S := the new tree obtained from S by
applying to the descendant of A; in
every nonaxiom leaf of S the
left rule applicable to Aj;
endif
endfor;
for i:=1 to n do
if nonatomic(B;) then
S := the new tree obtained from S by
applying to the descendant of B; in
every nonaxiom leaf of S the
right rule applicable to By;
endif
endfor;
T := dosubstitution(T, node, S)
end

69

70 3/Propositional Logic

The function dosubstitution yields the tree T[node < S] obtained by
substituting the tree S at the address node in the tree T'. Since a sequent
Ay,..., Ay, — Bi,...,B, is processed from left to right, if the propositions
Ay, ...,A;_1 have been expanded so far, since the propositions A;, ..., A,
By, ..., B, are copied unchanged, every leaf of the tree S obtained so far is
of the form T', A4;, ..., A,, — A, By, ..., B,. The occurrence of A; following I"
is called the descendant of A; in the sequent. Similarly, if the propositions
Aq,...,Am, By, ..., B;_1 have been expanded so far, every leaf of S is of the
form I' — A, B;, ..., By, and the occurrence of B; following A is called the
descendant of B; in the sequent. Note that the two for loops may yield a tree
S of depth m + n.

A call to procedure expand is also called an expansion step. A round is
the sequence of expansion calls performed during the for loop in procedure
search, in which each unfinished leaf of the tree (T}) is expanded. Note that
if we change the function finished so that a leaf is finished if all propositions
in the sequent labeling it are propositional symbols, the procedure search will
produce trees in which leaves labeled with axioms also consist of sequents in
which all propositions are atomic. Trees obtained in this fashion are called
atomically closed.

EXAMPLE 3.4.4

Let us trace the construction of the systematic deduction tree (which is
a proof tree) for the sequent

(PA-Q),(PD>Q),(TDR),(PAS)—T.

The following tree is obtained at the end of the first round:

Q7P7“Q7P7S_)T’T R7Q)P7“Q’P7S_)T

Q,P-Q,(PAS) =TT R,Q,P,~Q,(PAS) =T

r—A QP-Q,(TOR),(PAS)—=T

Pv_‘Q?(PDQ)7(TDR)7(P/\S)_>T

(PA=Q),(PD>Q),(TDR),(PANS)—T

whereI' = A =P,—-Q,(T D R),(PAS)— P,T.

The leaves Q,P,—Q,P,S — T,T and R,Q,P,-Q,P,S — T are not
axioms (yet). Note how the same rule was applied to (P A S) in the
nodes labeled Q, P,—Q,(PAS) — T,T and R,Q,P,—Q,(PAS) — T,
because these occurrences are descendants of (P A S) in (P A—-Q),(P D
Q),(T D R), (PAS)— T. After the end of the second round, we have
the following tree, which is a proof tree.

3.4 Proof Theory of Propositional Logic: The Gentzen System G’ 71

Q’P7P7S_)Q)T7T R’Q7P)P7S_)Q’T
Q7P7_‘Q7P7S_)T7T R’Q)P7_‘Q)P7S_)T

QP-Q,(PAS) =TT R,Q,P,-Q,(PAS) =T

r—A Q,P,-Q,(TDR),(PNS) =T

P7_'Q7(PDQ)7(TDR)7(P/\S)—>T

(PA-Q),(PD>Q),(TDR),(PANS)—T

whereI' = A=P,—-Q,(T D R),(PAS)— P,T.

It should also be noted that the algorithm of definition 3.4.6 could be
made more efficient. For example, during a round through a sequent we
could delay the application of two-premise rules. This can be achieved if a
two-premise rule is applied only if a sequent does not contain propositions to
which a one-premise rule applies. Otherwise the expand procedure is called
only for those propositions to which a one-premise rule applies. In this fashion,
smaller trees are usually obtained. For more details, see problem 3.4.13.

3.4.7 Completeness of the Gentzen System G’

We are now ready to prove the fundamental theorem of this section.

Theorem 3.4.1 The procedure search terminates for every finite input se-
quent. If the input sequent I' — A is valid, procedure search produces a
proof tree for I' — A; if ' — A is falsifiable, search produces a tree from
which all falsifying valuations can be found.

Proof: Define the complezity of a proposition A as the number of logical
connectives occurring in A (hence, propositional symbols have complexity 0).
Given a sequent A, ..., A, — Bi,..., By, define its complexity as the sum
of the complexities of Aj,..., Ap,B1,..., B,. Then, observe that for every
call to procedure expand, the complexity of every upper sequent involved in
applying a rule is strictly smaller than the complexity of the lower sequent
(to which the rule is applied). Hence, either all leaves will become axioms or
their complexity will become 0, which means that the while loop will always
terminate. This proves termination. We now prove the following claim.

Claim: Given any deduction tree T, a valuation v falsifies the sequent
I" — A labeling the root of T"if and only if v falsifies some sequent labeling a
leaf of T'.

Proof of claim: We use the induction principle for deduction trees. In
case of a one-node tree, the claim is obvious. Otherwise, the deduction tree

72 3/Propositional Logic

is either of the form
T
Sa
S1
where the bottom part of the tree is a one-premise rule, or of the form

T, T
So S3
S

where the bottom part of the tree is a two-premise rule. We consider the
second case, the first one being similar. By the induction hypothesis, v falsifies
So if and only if v falsifies some leaf of T5, and v falsifies S3 if and only if v
falsifies some leaf of T5. By lemma 3.4.1, v falsifies S if and only if v falsifies
So or S3. Hence, v falsifies S if and only if either v falsifies some leaf of T5
or some leaf of T3, that is, v falsifies some leaf of T'. (]

As a consequence of the claim, the sequent I' — A labeling the root
of the deduction tree is valid, if and only if all leaf sequents are valid. It is
easy to check that search builds a deduction tree (in a breadth-first fashion).
Now, either I' — A is falsifiable, or it is valid. In the first case, by the
above claim, if v falsifies I' — A, then v falsifies some leaf sequent of the
deduction tree T. By the definition of finished, such a leaf sequent must be
of the form P,..., P, — @Q1,...,Q, where the P; and @; are propositional
symbols, and the sets {P,..., P} and {Q1,...,Q,} are disjoint since the
sequent is not an axiom. Hence, if I' — A is falsifiable, the deduction tree
T is not a proof tree. Conversely, if T is not a proof tree, some leaf sequent
of T is not an axiom. By the definition of finished, this sequent must be
of the form P,..., Py, — @Q1,...,Q, where the P; and @; are propositional
symbols, and the sets { Py, ..., Py, } and {Q1, ..., @, } are disjoint. The valuation
v which makes every P; true and every @); false falsifies the leaf sequent
P,....P, — Q1,...,Q,, and by the above claim, it also falsifies the sequent
I' — A. Therefore, we have shown that I' — A is falsifiable if and only if
the deduction tree T is not a proof tree, or equivalently, that I' — A is valid
if and only if the deduction tree T is a proof tree. Furthermore, the above
proof also showed that if the deduction tree T" is not a proof tree, all falsifying
valuations for I' — A can be found by inspecting the nonaxiom leaves of T
O

Corollary Completeness of G'. Every valid sequent is provable. Further-
more, there is an algorithm for deciding whether a sequent is valid and if so,
a proof tree is obtained.

As an application of the main theorem we obtain an algorithm to convert
a proposition to conjunctive (or disjunctive) normal form.

3.4 Proof Theory of Propositional Logic: The Gentzen System G’ 73

3.4.8 Conjunctive and Disjunctive Normal Form

Definition 3.4.7 A proposition A is in conjunctive normal form (for short,
CNF) if it is a conjunction Ci A ... A Cy, of disjunctions C; = B; 1 V...V B ,,
where each B ; is either a propositional symbol P or the negation —F of
a propositional symbol. A proposition A is in disjunctive normal form (for
short, DNF) if it is a disjunction Cy V ... V Cy, of conjunctions C; = B; 1 A
...\ B; n,, where each B; ; is either a propositional symbol P or the negation
=P of a propositional symbol.

Theorem 3.4.2 For every proposition A, a proposition A’ in conjunctive
normal form can be found such that = A = A’. Similarly, a proposition A”
in disjunctive normal form can be found such that = A = A”.

Proof: Starting with the input sequent — A, let T be the tree given
by the algorithm search. By theorem 3.4.1, either A is valid in which case
all leaves are axioms, or A is falsifiable. In the first case, let A’ = PV —P.
Clearly, = A = A’. In the second case, the proof of theorem 3.4.1 shows that
a valuation v makes A true if and only if it makes every leaf sequent true. For
every nonaxiom leaf sequent Ay, ..., A, — B, ..., By, let

C=-4,V..V-A,VB;..VB,

and let A’ be the conjunction of these propositions. Clearly, a valuation v
makes A’ true if and only if it makes every nonaxiom leaf sequent Ay, ..., A,, —
By, ..., By, true, if and only if it makes A true. Hence, = A = A’.

To get an equivalent proposition in disjunctive normal form, start with
the sequent A — . Then, a valuation v makes A — false if and only if v makes
at least some of the sequent leaves false. Also, v makes A — false if and only
if v makes A true. For every nonaxiom sequent leaf A4, ..., A,, — B1,..., By,
let

C=AN...NAy AN=Bi A...AN—B,

and let A” be the disjunction of these propositions. We leave as an exercise
to check that a valuation v makes some of the non-axiom leaves false if and
only if it makes the disjunction A” true. Hence = A= A”. O

EXAMPLE 3.4.5

Counter-example tree for

- (-PD>Q)D(—-RDS).

74 3/Propositional Logic

P— RS

— R,S,~P Q—R,S
-R— S, —-P -RQ—S
— P, -RD>S Q—-RDS

-PO>Q—-RDS
- (-PD>Q)D(—RDS)

An equivalent proposition in conjunctive normal form is:

(-QV RV S)A(=PV RVS).

EXAMPLE 3.4.6

Counter-example tree for

(-P>Q)D>(-R>DS)—.

HPvQ R —
-P—Q — R S —
—-=PD>Q -RDS —

(-P>Q)D>(-R>S)—
An equivalent proposition in disjunctive normal form is:

SV RV (=P A-Q).

We present below another method for converting a proposition to con-
junctive normal form that does not rely on the construction of a deduction
tree. This method is also useful in conjunction with the resolution method
presented in Chapter 4. First, we define the negation normal form of a propo-
sition.

3.4.9 Negation Normal Form

The set of propositions in negation normal form is given by the following
inductive definition.

Definition 3.4.8 The set of propositions in negation normal form (for short,
NNF) is the inductive closure of the set of propositions {P,-P | P € PS}
under the constructors C\, and C,.

3.4 Proof Theory of Propositional Logic: The Gentzen System G’ 75

More informally, propositions in NNF are defined as follows:
(1) For every propositional letter P, P and —P are in NNF;
(2) If A and B are in NNF, then (AV B) and (A A B) are in NNF.

Lemma 3.4.4 Every proposition is equivalent to a proposition in NNF.

Proof: By theorem 3.3.1, we can assume that the proposition A is ex-
pressed only in terms of the connectives V and A and —. The rest of the proof
proceeds by induction on the number of connectives. By clause (1) of defi-
nition 3.4.8, every propositional letter is in NNF. Let A be of the form —B.
If B is a propositional letter, by clause (1) of definition 3.4.8, the property
holds. If B is of the form —C, by lemma 3.3.6, -—C' is equivalent to C, by
the induction hypothesis, C' is equivalent to a proposition C’ in NNF, and by
lemma 3.3.5, A is equivalent to C’, a proposition in NNF. If B is of the form
(C' v D), by lemma 3.3.6, =(C' V D) is equivalent to (-C' A =D). Note that
both =C and —D have fewer connectives than A. Hence, by the induction
hypothesis, =C and —D are equivalent to propositions C’ and D’ in NNF. By
lemma 3.3.5, A is equivalent to (C’ A D’), which is in NNF. If B is of the
form (C' A D), by lemma 3.3.6, =(C A D) is equivalent to (=C' V —=D). As in
the previous case, by the induction hypothesis, =C' and —=D are equivalent to
propositions C” and D’ in NNF. By lemma 3.3.5, A is equivalent to (C'V D'),
which is in NNF. Finally, if A is of the form (B C) where x € {A, V}, by the
induction hypothesis, C' and D are equivalent to propositions C’ and D’ in
NNF, and by lemma 3.3.5, A is equivalent to (C’ * D") which is in NNF. O

Lemma 3.4.5 Every proposition A (containing only the connectives V,A,—)
can be transformed into an equivalent proposition in conjunctive normal form,
by application of the following identities:

—A~A

~(AAB) ~ (-AV -B)

-(AV B) ~ (=AA-B)
AV(BAC)~(AVB)A(AV(O)
(BANC)VA~(BVA)A(CVA)
(AANBYAC ~AN(BAC)
(AVB)VC~ AV (BVC)

Proof: The proof of lemma 3.4.4 only uses the first three tautologies.
Hence, given a proposition A, we can assume that it is already in NNF. We
prove by induction on propositions that a proposition in NNF can be converted
to a proposition in CNF using the last four tautologies. If A is either of the
form P or =P, we are done. If A is of the form (BV (') with B and C in NNF,
by the induction hypothesis both B and C are equivalent to propositions B’
and C’ in CNF. If both B’ and C” consist of a single conjunct, (B’ Vv C’) is

76 3/Propositional Logic

a disjunction of propositional letters or negations of propositional letters and
by lemma 3.3.5, A is equivalent to (B’ V C’) which is in CNF. Otherwise, let
B' = B{A..ANB], and C' = C{ A ... ANC}, with either m > 1 or n > 1.

n’

By repeated applications of the distributivity and associativity rules (to be
rigorous, by induction on m + n),

(B'vC')y=(BiAN...ANB,)V(C;AN...\NC))
~ ((B{A...AB,)VC)A..N((BYAN...ANB.L)VCl)
~ N{B/vVC) [1<i<m, 1<j<n}.

The resulting proposition is in CNF, and by lemma 3.3.5, A is equivalent to a
proposition in CNF. If A is of the form (B A C) where B and C are in NNF,
by the induction hypothesis, B and C' are equivalent to propositions B’ and
C’ in CNF. But then, (B’AC”) is in CNF, and by lemma 3.4.5, A is equivalent
to (B'AC"). O

The conjunctive normal form of a proposition may be simplified by using
the commutativity rules and the idempotency rules given in lemma 3.3.6. A
lemma similar to lemma 3.4.5 can be shown for the disjunctive normal form
of a proposition.

EXAMPLE 3.4.7

Consider the proposition
A=(-PDQ)D(—RDS).

First, we eliminate D using the fact that (=B Vv C) is equivalent to
(BDC). We get

(=(==PVQ))V(—-—RVS).

Then, we put this proposition in NNF. We obtain
(=P A=Q)V (RVS).

Using distributivity we obtain

(=PVRVS)AN(-QV RVYS),
which is the proposition obtained in example 3.4.5 (up to commutativ-
ity). However, note that the CNF (or DNF) of a proposition is generally
not unique. For example, the propositions

(PVQ)AN(-PVR) and (PVQ)A(-PVR)A(QVR)

are both in CNF and are equivalent.

PROBLEMS 7
PROBLEMS

3.4.1. Give proof trees for the following tautologies:

AD(BDA)
(ADB)D((AD(BD(C)D(ADC))
AD(BD>(AAB))
AD(AVB) B> (AVB)
(AD>B)D((AD>-B)D-A)
(ANB)D A (ANB)D B
(A>C)>((BDC)D((AVvB)D(0))
-—ADA

3.4.2. Using counter-example trees, give propositions in conjunctive and dis-
junctive normal form equivalent to the following propositions:

(ADC)>((Bo>D)>((AvB)D>C(C))
(ADB) D ((BD>-C)D>-4A)

3.4.3. Recall that L is a constant symbol always interpreted as F.

(i) Show that the following equivalences are valid.

(ii) Show that every proposition A is equivalent to a proposition A’
using only the connective D and the constant symbol L.

(iii) Consider the following Gentzen-like rules for propositions over
the language consisting of the propositional letters, D and L.

The symbols I', A, A denote finite arbitrary sequences of propositions
(possibly empty):

NA—AA BT,A—A AT — B,AA
I'(ADB),A—= A I' - A/ (ADB),A
I'—AA

I'—-A, LA

78

3.4.4.

3.4.5.
3.4.6.

3/Propositional Logic

The axioms of this system are all sequents of the form I' — A where
I' and A contain a common proposition, and all sequents of the form
I, L,A— A

(a) Prove that for every valuation v, the conclusion of a rule is fal-
sifiable if and only if one of the premises is falsifiable, and that the
axioms are not falsifiable.

(b) Prove that the above Gentzen-like system is complete.

(¢) Convert (P D Q) D (=Q D —P) to a proposition involving only
D and L. Give a proof tree for this proposition in the above system.

Let C and D be propositions and P a propositional letter. Prove that
the following equivalence (the resolution rule) holds by giving a proof
tree:

(CVPYAN(DV-P)=(CVP)AN(DV-P)AN(CVD)

Show that the above also holds if either C' or D is missing.
Give Gentzen-like rules for equivalence (=).

Give proof trees for the following tautologies:

Associativity rules:
(AvB)VC)=(Av(BVC)) ((AAB)ANC)=(AN(BAQ))
Commutativity rules:
(AvB)=(BVA) (AANB)=(BAA)
Distributivity rules:
(AV(BANC))=((AVB)A(AV (D))
(ANBVC)=(AANB)V(AANC))

De Morgan’s rules:
-(AvB)=(-AA-B) —-(AAB)=(-AV-B)
Idempotency rules:

(AVA)=A (AnNA)=A
Double negation rule:

—A=A
Absorption rules:
(AV(AANB)=A (AN(AVB)=A
Laws of zero and one:

(Av L)=A (ANL)=1L
(AvT)=T (AAT)=A4A
(AV-A)=T (AN-A) =L

PROBLEMS 79

3.4.7.

3.4.8.

* 3.4.9.

Instead of defining logical equivalence (~) semantically as in definition
3.3.6, let us define ~ proof-theoretically so that, for all A, B € PROP,

A~ Bifandonly if - (AD>B)A(BDA)in .

Prove that ~ is an equivalence relation satisfying the properties of
lemma 3.3.5 (Hence, ~ is a congruence).

Give Gentzen-like rules for the connective @ (exclusive-or), where Hg
is the binary truth function defined by the proposition (P A =Q) V

(=P AQ).

The Hilbert system H for propositional logic is defined below. For
simplicity, it is assumed that only the connectives A, V, D and — are
used.

The azxioms are all propositions given below, where A,B,C denote
arbitrary propositions.

AD(BDA)
(ADB)D((AD(BD(C))D(ADCQ))
AD (B> (AAB))
AD(AV B), B> (AVB)
(AD>B)D((AD-B)D>-A)
(AN B) D A, (ANB)D B
(A>DC)>((B>C)D((AVvB)D(0))
-——ADA

There is a single inference rule, called modus ponens given by:

A (AD B)
B

Let {A,..., A} be any set of propositions. The concept of a de-
duction tree (in the system H) for a proposition B from the set
{41, ..., A} is defined inductively as follows:

(i) Every one-node tree labeled with an axiom B or a proposition B
in {A1,..., Ay} is a deduction tree of B from {Aq,..., An}.

(ii) If Ty is a deduction tree of A from {Aj,..., A;n} and Ts is a de-
duction tree of (A D B) from {Ay, ..., A, }, then the following tree is
a deduction tree of B from {Aq, ..., A;,}:

Ty Ty
A (ADB)

80

* 3.4.10.

* 3.4.11.

3/Propositional Logic

A proof tree is a deduction tree whose leaves are labeled with axioms.
Given a set {Ayq, ..., Ay, } of propositions and a proposition B, we use
the notation Aq, ..., A,, = B to denote that there is deduction of B
from {Aq, ..., A, }. In particular, if the set {Aq, ..., A, } is empty, the
tree is a proof tree and we write - B.

(i) Prove that modus ponens is a sound rule, in the sense that if both
premises are valid, then the conclusion is valid. Prove that the system
H is sound; that is, every proposition provable in H is valid.

(ii) Prove that for every proposition A, - (A D A).

Hint: Use the axioms A D (B D A) and (A D> B) D ((AD (B D
C)D(ADQ)).

(iii) Prove the following:

(a) Ay,.., A, A;, foreveryi,1 <i<m.
(b) If Ay,...., A F B; for every i,1 <i < m and
Bl, ,Bm - C, then Al, ,Am FC.

In this problem, we are also considering the proof system H of problem
3.4.9. The deduction theorem states that, for arbitrary propositions
Ala cey A’I’TH A7 Ba

if Ay,...,An, A B, then
A, A, B (ADB)

Prove the deduction theorem.

Hint: Use induction on deduction trees. The base case is relatively
easy. For the induction step, assume that the deduction tree is of the
form
Ty T3
B (Bl D) B)
B

where the leaves are either axioms or occurrences of the propositions
Aq,...,Ap,A. By the induction hypothesis, there are deduction trees
T} for (A D By) and T3 for (A D (By D B)), where the leaves of T}
and T4 are labeled with axioms or the propositions Ay, ..., A,,. Show
how a deduction tree whose leaves are labeled with axioms or the
propositions Ay, ..., A, can be obtained for (A D B).

In this problem, we are still considering the proof system H of problem
3.4.9. Prove that the following meta-rules hold about deductions in

PROBLEMS 81

* 3.4.12.

3.4.13.

the system H: For all propositions A,B,C' and finite sequence I" of
propositions (possibly empty), we have:

Introduction FElimination
D IfT'AF B, A, (ADB)FB
then '+ (A D B)
AN A,BF(AAB) (ANB)F A
(ANB)F B
v Ak (AVB) I AFCand T',BFC

then T, (AV B) F C
~ T, AFBandT,AF—-B -—AF A
then I' - —A (double negation elimination)
(reductio ad absurdum) A,-A+ B

(weak negation elimination)

Hint: Use problem 3.4.9(iii) and the deduction theorem.

In this problem it is shown that the Hilbert system H is complete, by
proving that for every Gentzen proof T of a sequent — A, where A
is any proposition, there is a proof in the system H.

(i) Prove that for arbitrary propositions Ay, ..., Ay, B, ..., By,
(a) in H, for n > 0,

Ay, .y Ay, By, ..., B, F P A =P if and only if
Al,...,Am7_|Bl,...7_|Bn_1 F Bn, and

(b) in H, for m > 0,
Ay, ...,Ap,—B1,...,mB, = P A =P if and only if
Aoy ..y Ay, mB1, ..., B, F —A;L
(ii) Prove that for any sequent Ay, ..., A, — By, ..., By, if
A,.., A, — By,...,.B,
is provable in the Gentzen system G’ then
A1,y A, mB1,y ..., By B (P A—P)

is a deduction in the Hilbert system H. Conclude that H is complete.
Hint: Use problem 3.4.11.

Consider the modification of the algorithm of definition 3.4.6 obtained
by postponing applications of two-premise rules. During a round, a

82 3/Propositional Logic

two-premise rule is applied only if a sequent does not contain proposi-
tions to which a one-premise rule applies. Otherwise, during a round
the expand procedure is called only for those propositions to which a
one-premise rule applies.

Show that theorem 3.4.1 still holds for the resulting algorithm. Com-
pare the size of the proof trees obtained from both versions of the
search algorithm, by trying a few examples.

3.4.14. Write a computer program (preferably in PASCAL or C) implement-
ing the search procedure of definition 3.4.6.

3.5 Proof Theory for Infinite Sequents: Extended Com-
pleteness of G’

In this section, we obtain some important results for propositional logic (ex-
tended completeness, compactness, model existence) by generalizing the pro-
cedure search to infinite sequents.

3.5.1 Infinite Sequents

We extend the concept of a sequent I' — A by allowing I" or A to be count-
ably infinite sequences of propositions. The method of this section is very
important because it can be rather easily adapted to show the completeness
of a Gentzen system obtained by adding quantifier rules to G’ for first-order
logic (see Chapter 5).

By suitably modifying the search procedure, we can generalize the main
theorem (theorem 3.4.1) and obtain both the extended completeness theorem
and the compactness theorem. The procedure search is no longer an algorithm
since it can go on forever in some cases. However, if the input sequent is
valid, a finite proof will be obtained. Also, if the input sequent is falsifiable,
a falsifying valuation will be (nonconstructively) obtained.

We will now allow sequents I' — A in which I' or A can be countably
infinite sequences. It is convenient to assume that I" is written as A1, ..., Ap, ...
(possibly infinite to the right) and that A is written as By, ..., By, ... (possibly
infinite to the right). Hence, a sequent will be denoted as

Al, ---7Am, e — Bl7 ...,Bn7

where the lists on both sides of — are finite or (countably) infinite.

In order to generalize the search procedure, we need to define the func-
tions head and tail operating on possibly infinite sequences. Let us denote
the empty sequence as <>.

head(<>) =<>; otherwise head(Ay, ..., Am, ...) = A;.

3.5 Proof Theory for Infinite Sequents: Extended Completeness of G’ 83

tail(<>) =<>; otherwise tail(Ay, ..., Am,...) = Aay e, Ay oo

In particular, tail(A;) =<>. The predicate atomic is defined such that
atomic(A) is true if and only if A is a propositional symbol.

3.5.2 The Search Procedure for Infinite Sequents

Every node of the systematic tree constructed by search is still labeled with
a finite sequent I' — A. We will also use two global variables L and R, which
are possibly countably infinite sequences of propositions. The initial value of
L is tail(T'g) and the initial value of R is tail(Ag), where I'g — Ay is the
initial sequent.

A leaf of the tree is an aziom (or is closed) iff its label ' — A is an
axiom. A leaf is finished iff either

(1) it is closed, or

(2) the sequences L and R are empty and all propositions in T'; and A
are atomic. The new versions of procedures search and expand are given as
follows.

Definition 3.5.1 Procedure search.

procedure search(I'y — Ag : sequent; var T : tree);
begin
L :=tail(Ty); T := head(T'y);
R :=tail(Ag); A := head(Ag);
let T be the one-node tree labeled with I' — A;
while not all leaves of T are finished do
Ty :=T;
for each leaf node of Ty
(in lexicographic order of tree addresses) do
if not finished(node) then
expand(node, T)
endif
endfor;
L :=tail(L); R := tail(R)
endwhile;
if all leaves are closed
then
write (‘T is a proof of Ty — Ag’)
else
write (‘To — Ag is falsifiable’)
endif
end

The input to search is a one-node tree labeled with a possibly infinite

84 3/Propositional Logic

sequent I' — A. Procedure search builds a possibly infinite systematic deduc-
tion tree using procedure expand.

Procedure expand is modified as follows: For every leaf u created during
an expansion step, if I' — A is the label of u, the finite sequent I' — A is
extended to I', head(L) — A, head(R). At the end of a round, the heads
of both L and R are deleted. Hence, every proposition will eventually be
considered.

Procedure Expand

procedure expand(node : tree-address; var T : tree);
begin
let Ay, ..., Ay, — Bi, ..., B, be the label of node;
let S be the one-node tree labeled with
Al, ceey Am — Bl, ceey Bn,
for i:=1 to m do
if nonatomic(A;) then
S := the new tree obtained from S by
applying to the descendant of A; in
every nonaziom leaf of S the
left rule applicable to Aj;
(only the sequent part is modified,
L and R are unchanged)
endif
endfor;
for i :=1 to n do
if nonatomic(B;) then
S := the new tree obtained from S by
applying to the descendant of B; in
every nonaxiom leaf of S the
right rule applicable to B;;
(only the sequent part is modified,
L and R are unchanged)
endif
endfor;
for each nonaziom leaf u of S do
letT'— A be the label of u;
IV :=T, head(L);
A" := A, head(R);
create a new leaf ul, son of u,
labeled with the sequent TV — A’
endfor;
T := dosubstitution(T, node, S)
end

If search terminates with a systematic tree whose leaves are all closed,

3.5 Proof Theory for Infinite Sequents: Extended Completeness of G’ 85

we say that search terminates with a closed tree. Note that a closed tree is
finite by definition. We will also need the following definitions.

Definition 3.5.2 Given a possibly infinite sequent I' — A, a valuation v
falsifies I' — A if
viEA

for every proposition A in I', and
v E-B

for every proposition B in A. We say that I' — A is falsifiable.

A valuation v satisfies I' — A if, whenever

vEA

for every proposition A in I', then there is some proposition B in A such that

v E B.
We say that I' — A is satisfiable.

The sequent I' — A is valid if it is satisfied by every valuation. This is
denoted by
ET — A.

The sequent I' — A is provable if there exist finite subsequences C1, ..., Cy,
and Dy, ..., D, of I" and A respectively, such that the finite sequent

Cl, ceey Cm — Dl, ceey Dn
is provable. This is denoted by

FT — A.

Note that if an infinite sequent is provable, then it is valid. Indeed, if
I" — A is provable, some subsequent C4,...,C,, — D1, ..., D,, is provable, and
therefore valid. But this implies that I' — A is valid, since Dy, ..., D, is a
subsequence of A.

EXAMPLE 3.5.1

Consider the sequent I'g — Ay where
FO =< Po,(PO DPl),(Pl DPZ),...,(PZ' DPi+1)7... >,

and
AO =< Q7P3 > .

86

3/Propositional Logic
Initially,
I'=< Py >,
L=< (PO D) Pl),(Pl D) P2)7...7(Pi D PiJrl),... >,
A=<@Q>, and
R=<P;>.
At the end of the first round, we have the following tree:
Py, (Po D P1) — Q,Ps
Py—Q
Note how (Py D P;), the head of L, was added in the premise of the top
sequent, and Ps, the head of R, was added to the conclusion of the top
sequent. At the end of this round,
L=< (P1DP),...(P, D Pi1),...> and R=<>.
At the end of the second round, we have:
P,Py,(PLD P) —Q, P
Py — Py, Q, Ps PPy — Q. Ps
Py, (Po D> P) —Q,Ps
Py—Q
We have
L=<(P2DP),...(P; D Pit1),... > and R=<>.
At the end of the third round, we have the tree:
Py, P, Py, (P D P3) — Q, P3
Py, Py — P1,Q, Ps Py, P, Py — Q,P3
P, Py, (PLD P2) — Q, P
Py — Py, Q. Ps PPy — Q. Ps
Py,(PhD P1) = Q, P
Py —Q

‘We have

L=< (P3sDP),...(P,DP4i1),...> and R=<>.

3.5 Proof Theory for Infinite Sequents: Extended Completeness of G’ 87

At the end of the fourth round, we have the closed tree:

Py, P, Py — P,Q,P3 P3, P, P,y — Q, P

Py, P1, Py, (P2 D P3) — Q, Ps
P, Py — P1,Q, Ps Py, PPy — Q, P
P, Py, (PL D P2) — Q, Ps
1T, PPy — Q,Ps
Py, (PyD P)— Q,Ps
Py—Q

where

I = Py — P, Q, Ps.

The above tree is not quite a proof tree, but a proof tree can be con-
structed from it as follows. Starting from the root and proceeding from
bottom-up, for every sequent at depth k£ in which a proposition of the
form head(L) or head(R) was introduced, add head(L) after the right-
most proposition of the premise of every sequent at depth less than k,
and add head(R) after the rightmost proposition of the conclusion of
every sequent at depth less than k:

P27P17P0_>P2aQ7P3 P37P27P1aPOHQ7P3

P27P17P03 P2:)P3)*>Q3P3

(
II3 Py, P, Py, (P» D P3) —Q,Ps
)

P, Py, (PLD P,),(P, D P3) = Q,Ps

HQ Pl,P(), PlDPQ),(PQng)HQ7P3

(
Py, (PoD P1),(PL D P),(PaDP3) = Q, P
Py, (PoD P1),(PL D P),(PaDP3) = Q,Ps
with

Iy = Py, (P1 D P), (P2 D P3) = Py,Q, P3
and I3 = Py, Py, (P, D P3) — P1,Q, Ps.

Then, delete duplicate nodes, obtaining a legal proof tree:

88 3/Propositional Logic

P27P1aP0—>P27Q7P3 P3aP27P17P0_>Q7P3

I3 Py, P, Py, (P, D P3) — Q,Ps

II, Py, Py, (Pr D P), (P2 D P3) — Q, Ps

Py, (PyD P1),(PLD P),(PaDP3) = Q, P
with
Iy = Py, (P1 D P2), (P> D P3) — Py,Q, Ps3
and H3:P1,P0,(P2:)P3)—>P1,Q,P3.

EXAMPLE 3.5.2

Consider the sequent I'g — A where
Ty =< P(),(PO DPI),(PI DP2)7...,(Pi DPrL’+1>7... >,

and
Ag=<Q >.

Note that the only difference is the absence of P3 in the conclusion. This
time, the search procedure does not stop. Indeed, the rightmost branch
of the tree is infinite, since every sequent in it is of the form

PnaPn—la---PlaPO - Q

Let U be the union of all the propositions occurring as premises in the
sequents on the infinite branch of the tree, and V' be the union of all the
propositions occurring as conclusions in such sequents. We have

U ={(PyD Py)sec (P D Pis1)sees P, Proy Py),

and

v=1{Q).

The pair (U, V') can be encoded as a single set if we prefix every proposi-
tion in U with the letter “T” (standing for true), and every proposition
in V with the letter “F” (standing for false). The resulting set

{T(Py> P)),....T(P; > Pi1),.., TPy, TP,,....TP;, ..., FQ}

is a set having some remarkable properties, and called a Hintikka set.
The crucial property of Hintikka sets is that they are always satisfiable.
For instance, it is easy to see that the valuation such that v(P;) = T for
all 4 > 0 and v(Q) = F satisfies the above Hintikka set.

Roughly speaking, the new version of the search procedure is complete
because:

3.5 Proof Theory for Infinite Sequents: Extended Completeness of G’ 89

(1) If the input sequent is valid, a proof tree can be constructed from
the output tree (as in example 3.5.1);

(2) If the sequent is falsifiable, the output tree contains a path from
which a Hintikka set can be constructed (as in example 3.5.2). Hence, a
counter example exists.

In order to prove rigorously properties (1) and (2), we will need some
auxiliary definitions and lemmas. First, we shall need the following result
about infinite finite-branching trees known as Konig’s lemma.

3.5.3 Konig’s Lemma

Recall from Subsection 2.2.2 that a tree T is finite branching iff every node
has finite outdegree (finite number of successors).

Lemma 3.5.1 (Konig’s lemma) If T is a finite-branching tree with infinite
domain, then there is some infinite path in 7T'.

Proof: We show that an infinite path can be defined inductively. Let ug
be the root of the tree. Since the domain of T is infinite and uq has a finite
number of successors, one of the subtrees of ug must be infinite (otherwise,
T would be finite). Let u; be the root of the leftmost infinite subtree of ug.
Now, assume by induction that a path ug, ..., u, has been defined and that the
subtree T'/u,, is infinite. Since u, has a finite number of successors and since
T /u,, is infinite, using the same reasoning as above, u,, must have a successor
which is the root of an infinite tree. Let u,41 be the leftmost such node. It
is clear that the above inductive construction yields an infinite path in T (in
fact, the leftmost such path). O

Remark: The above proof only shows the existence of an infinite path.
In particular, since there is in general no effective way of testing whether a
tree is infinite, there is generally no algorithm to find the above nodes.

In example 3.5.2, the two sets U and V' play a crucial role since they yield
a falsifying valuation. The union of U and V is a set having certain remarkable
properties first investigated by Hintikka and that we now describe. For this,
it is convenient to introduce the concept of a signed formula as in Smullyan,
1968.

3.5.4 Signed Formulae

Following Smullyan, we will define the concept of an a-formula and of a b-
formula, and describe their components. Using this device greatly reduces the
number of cases in the definition of a Hintikka set, as well as in some proofs.

Definition 3.5.3 A signed formula is any expression of the form T'A or F'A,
where A is an arbitrary proposition. Given any sequent (even infinite) I' — A,

90 3/Propositional Logic
we define the signed set of formulae

(TA| AcTYU{FB|BeA.

Definition 3.5.4 type-a and type-b signed formulae and their components
are defined in the following tables. If A is a signed formula of type a, it has
two components denoted by A; and As. Similarly, if B is a formula of type
b, it has two components denoted by B; and Bs.

Type-a formulae

A Ay Ay
T(XAY) TX TY
F(XvVY) FX FY
F(XD>Y) TX FY

T(~X) FX FX
F(-X) TX TX

Type-b formulae
B By By
F(XAY) FX FY

T(XVY) TX TY
T(X>Y) FX TY

Definition 3.5.5 A valuation v makes the signed formula T A true iff v
makes A true and v makes F'A true iff v makes A false. A valuation v
satisfies a signed set S iff v makes every signed formula in S true.

Note that for any valuation, a signed formula A of type a is true if and
only if both Ay and Ay are true. Accordingly, we also refer to an a-formula
as a formula of conjunctive type. On the other hand, for any valuation, a
signed formula B of type b is true if and only if at least one of By, By is
true. Accordingly, a b-formula is also called a formula of disjunctive type.

Definition 3.5.6 The conjugate of a signed formula is defined as follows:
The conjugate of a formula T'A is F'A, and the conjugate of F'A is T A.

3.5.5 Hintikka Sets

A Hintikka set is a set of signed formulae satisfying certain downward closure
conditions that ensure that such a set is satisfiable.

Definition 3.5.7 A set S of signed formulae is a Hintikka set iff the following
conditions hold:

3.5 Proof Theory for Infinite Sequents: Extended Completeness of G’ 91

(H1) No signed propositional letter and its conjugate are both in S.
(H2) If a signed a-formula A is in S then both A; and A, are in S.
(H3) If a signed b-formula B is in S then either B; isin S or By isin S.

The following lemma shows that Hintikka sets arise when the search
procedure does not produce a closed tree (recall that a closed tree is finite).

Lemma 3.5.2 Whenever the tree T' constructed by the search procedure is
not a closed tree, a Hintikka set can be extracted from T

Proof: If T is not a closed tree, then either it is finite and some leaf is
not an axiom, or it is infinite. If T is infinite, by lemma 3.5.1, there is an
infinite path in 7. In the first case, consider a path to some nonaxiom leaf,
and in the second consider an infinite path. Let

S={TA|AcU}U{FB|BeV}

be the set of signed formulae such that U is the union of all propositions
occurring in the antecedent of each sequent in the chosen path, and V is the
union of all propositions occurring in the succedent of each sequent in the
chosen path. S is a Hintikka set.

(1) H1 holds. Since every atomic formula occurring in a sequent occurs
in every path having this sequent as source, if S contains both TP and FP
for some propositional letter P, some sequent in the path is an axiom. This
contradicts the fact that either the path is finite and ends in a non-axiom, or
is an infinite path.

(2) H2 and H3 hold. This is true because the definition of a-components
and b-components mirrors the inference rules. Since all nonatomic propo-
sitions in a sequent I' — A on the chosen path are considered during the

expansion phase, and since every proposition in the input sequent is eventu-
ally considered (as head(L) or head(R)):

(i) For every proposition A in U, if A belongs to ' — A and TA is of
type a, A; and Ag are added to the successor of I' — A during the expansion
step. More precisely, if A; (or Ay) is of the form T'C; (or T'Cs), C; (Cy) is
added to the premise of the successor of I' — A; if A; (As) is of the form
FC, (FCy), Cy (Cs) is added to the conclusion of the successor of I' — A. In
both cases, A; and As belong to S.

(ii) If A belongs to I' — A and T'A is of type b, A; is added to the left
successor of I' — A, and A, is added to the right successor of I' — A, during
the expansion step. As in (i), more precisely, if A; (or As) is of the form T'C}
(T'Cy), Cy (C3) is added to the premise of the left successor (right successor)
of ' — A; if Ay (Az) is of the form FCy (FCs), Cy (Cs) is added to the
conclusion of the left successor (right successor) of I' — A. Hence, either B;
or By belongs to S.

92 3/Propositional Logic

Properties (i) and (ii) also apply to the set V. This proves that S is a
Hintikka set. O

The following lemma establishes the fundamental property of Hintikka
sets.

Lemma 3.5.3 Every Hintikka set S is satisfiable.

Proof: We define a valuation v satisfying S as follows: For every signed
propositional symbol TP in S let v(P) = T; for every signed propositional
symbol FP in S let v(P) = F; for every propositional symbol P such that
neither TP nor FP is in S, set arbitrarily v(P) = T. By clause (H1) of a
Hintikka set, v is well defined. It remains to show that v makes every signed
formula TX or FFX true (that is, in the first case X true and in the second
case X false). This is shown by induction on the number of logical connectives
in X. Since every signed formula is either of type a or of type b, there are two
cases.

(1) If A of type a is in S, by (H2) both 4; and Ay are in S. But A; and
As have fewer connectives than A and so, the induction hypothesis applies.
Hence, v makes both A; and As true. This implies that v makes A true.

(2) If B of type b is in S, by (H3) either By or By is in S. Without loss
of generality assume that B is in S. Since B; has fewer connectives than B,
the induction hypothesis applies. Hence, v makes By true. This implies that
v makes B true. [

3.5.6 Extended Completeness of the Gentzen System G’

We are now ready to prove the generalization of theorem 3.4.1.

Theorem 3.5.1 Given a sequent I' — A, either
(1) I' — A is falsifiable and

(i) If ' — A is infinite, then search runs forever building an infinite
tree T, or

(ii) If I' — A is finite, then search produces a finite tree T with some
non-axiom leaf.

In both cases, a falsifying valuation can be obtained from some
path in the tree produced by procedure search; or

(2) T — A is valid and search terminates with a closed tree 7. In this case,
there exist finite subsequences C1,...,C,, and D1,...,D, of I and A
respectively such that the sequent C1,...,C,, — D, ..., D,, is provable.

Proof: First, observe that if a subsequent of a sequent is valid, the
sequent itself is valid. Also, if I' — A is infinite, search terminates if and only
if the tree is closed. This last statement holds because any node that is not an
axiom is not finished, since otherwise L and R would be empty, contradicting

3.5 Proof Theory for Infinite Sequents: Extended Completeness of G’ 93

the fact that I' — A is infinite. Hence, at every step of the procedure search,
some node is unfinished, and since the procedure expand adds at least one
new node to the tree (when head(L) is added to T and head(R) is added to
A), search builds an infinite tree. Consequently, if ' — A is infinite, either
search halts with a closed tree, or it builds an infinite tree.

If search halts with a closed tree, let C1, ..., C}, be the initial subsequence
of propositions in I'" that were deleted from I' to obtain L, and Dy, ..., D,, be
the initial subsequence of propositions in A which were deleted from A to
obtain R. A proof tree for a the finite sequent C,...,C,, — Dy, ..., D, can
easily be obtained from T, using the technique illustrated in example 3.5.1.

First, starting from the root and proceeding bottom-up, for each node
I, head(L) — A, head(R)

at depth k created at the end of a call to procedure expand, add head(L) after
the rightmost proposition in the premise of every sequent at depth less than
k, and add head(R) after the rightmost proposition in the conclusion of every
sequent at depth less than k, obtaining the tree T7'. Then, a proof tree T"
for C4,...,Cpy, — D1, ..., Dy, is constructed from T” by deleting all duplicate
nodes. The tree T"” is a proof tree because the same inference rules that have
been used in T are used in T”. A proof similar to that of theorem 3.4.1 shows
that C1,...,C,, — D1, ..., Dy, is valid and consequently that I' — A is valid.

Hence, if the search procedure halts with a closed tree, a subsequent of
I' — A is provable, which implies that I' — A is provable (and consequently
valid). Hence, if I' — A is falsifiable, either the search procedure halts with
a finite nonclosed tree if I' — A is finite, or else search must go on forever
if ' — A is infinite. If the tree is finite, some leaf is not an axiom, and
consider the path to this leaf. Otherwise, let T be the infinite tree obtained
in the limit. This tree is well defined since for every integer k, search will
produce the subtree of depth k of T. Since T is infinite and finite branching,
by Konig’s lemma, there is an infinite path ug, u1, ..., up,... in T. By lemma
3.5.2, the set

S={TA|AcU}U{FB|BeV}

of signed formulae such that U is the union of all propositions occurring in
the antecedent of each sequent in the chosen path, and V is the union of all
propositions occurring in the succedent of each sequent in the chosen path, is
a Hintikka set. By lemma 3.5.3, S is satisfiable. But any valuation satisfying
S falsifies I' — A, and I’ — A is falsifiable.

To summarize, if the search procedure halts with a closed tree, I' — A
is provable, and therefore valid. Otherwise I' — A is falsifiable.

Conversely, if I' — A is valid, search must halt with a closed tree,
since otherwise the above reasoning shows that a falsifying valuation can be
found. But then, we have shown that I' — A is provable. If ' — A is

94 3/Propositional Logic

falsifiable, search cannot halt with a closed tree, since otherwise I' — A
would be provable, and consequently valid. But then, we have shown that a
falsifying valuation can be found from the tree 7. This concludes the proof
of the theorem.]

We now derive some easy consequences of the main theorem. Since a
provable sequent is valid, the following is an obvious corollary.

Theorem 3.5.2 (Extended completeness theorem for G') For every (possi-
bly infinite) sequent I' — A, ' — A is valid if and only if ' — A is provable.

3.5.7 Compactness, Model Existence, Consistency

Recall that a proposition A is satisfiable if some valuation makes it true.

Definition 3.5.8 A set I' of propositions is satisfiable iff some valuation
makes all propositions in I" true.

Theorem 3.5.3 (Compactness theorem for G’) For any (possibly infinite)
set T of propositions, if every finite (nonempty) subset of T" is satisfiable then
T" is satisfiable.

Proof: Assume I is not satisfiable. Viewing I' as a sequence of proposi-
tions, it is clear that the sequent

I' —

is valid, and by theorem 3.5.1 there is a finite subsequence Ay, ..., A, of I' such
that
Al, ceey Ap —

is provable. But then, by lemma 3.4.3, A4, ..., A, — is valid, which means that
Ay, ..., Ap is not satisfiable contrary to the hypothesis. Hence I' is satisfiable.
O

Definition 3.5.9 A set I' of propositions is consistent if there exists some
proposition B such that the sequent I' — B is not provable (that is, A1, ..., A,
— B is not provable for any finite subsequence Ay, ..., 4, of T'). Otherwise,
we say that I' is inconsistent.

Theorem 3.5.4 (Model existence theorem for G’) If a set I" of propositions
is consistent then it is satisfiable.

Proof: Assume I' unsatisfiable. Hence, for every proposition B, the
sequent
'—B

is valid. By theorem 3.5.1, for every such B, there is a finite subsequence
A, ..., Ap of I' such that the sequent

Ah ...,Ap — B

3.5 Proof Theory for Infinite Sequents: Extended Completeness of G’ 95

is provable. But then, I" is not consistent, contrary to the hypothesis. [
The converse of theorem 3.5.4 is also true.

Lemma 3.5.4 (Consistency lemma for G’) If a set T' of propositions is sat-

isfiable then it is consistent.

Proof: Let v be a valuation such that
vEA
for every proposition in I". Assume that I' is inconsistent. Then,
I'—B

is provable for every proposition B, and in particular, there is a finite subse-
quence Aj, ..., A, of I such that

Al, ,Am — PA—-P

is provable (for some propositional symbol P). By lemma 3.4.3, Ay, ..., A, —
P A =P is valid and, since the valuation v makes all propositions in I' true, v
should make P A =P true, which is impossible. Hence, IT" is consistent. (]

Note that if a set I' of propositions is consistent, theorem 3.5.4 shows
that the sequent I' — is falsifiable. Hence, by theorem 3.5.1, a falsifying
valuation can be obtained (in fact, all falsifying valuations can be obtained
by considering all infinite paths in the counter-example tree).

One may view the goal of procedure search as the construction of Hin-
tikka sets. If this goal fails, the original sequent was valid and otherwise,
any Hintikka set yields a falsifying valuation. The decomposition of proposi-
tions into a-components or b-components is the basis of a variant of Gentzen
systems called the tableaux system. For details, see Smullyan, 1968.

3.5.8 Maximal Consistent Sets

We conclude this section by discussing briefly the concept of maximal consis-
tent sets. This concept is important because it can be used to give another
proof of the completeness theorem (theorem 3.5.2).

Definition 3.5.10 A consistent set I' of propositions is mazimally consistent
(or a maximal consistent set) iff, for every consistent set A, if ' C A, then
I' = A. Equivalently, every proper superset of I' is inconsistent.

The importance of maximal consistent sets lies in the following lemma.

Lemma 3.5.5 Every consistent set I is a subset of some maximal consistent
set A.

96 3/Propositional Logic

Proof: If T is a consistent set, by theorem 3.5.4, it is satisfiable. Let v
be a valuation satisfying I'. Let A be the set

{A]v A}

of all propositions satisfied by v. Clearly, I" is a subset of A. We claim that A
is a maximal consistent set. First, by lemma 3.5.4, A is consistent since it is
satisfied by v. It remains to show that it is maximally consistent. We proceed
by contradiction. Assume that there is a consistent set A such that A is a
proper subset of A. Since A is consistent, by theorem 3.5.4, it is satisfied by a
valuation v’. Since A is a proper subset of A, there is a proposition A which
is in A but not in A. Hence,

v £ A,

since otherwise A would be in A. But then,
vl A,

and —A is in A. Since A is a subset of A, v’ satisfies every proposition in A,
and in particular

v E A

But since v’ satisfies A, we also have
o A,

which is impossible. Hence, A is indeed maximally consistent.]

The above lemma was shown using theorem 3.5.4, but it can be shown
more directly and without theorem 3.5.4. Actually, theorem 3.5.4 can be
shown from lemma 3.5.5, and in turn, the completeness theorem can be shown
from theorem 3.5.4. Such an approach to the completeness theorem is more
traditional, but not as constructive, in the sense that it does not provide a
procedure for constructing a deduction tree.

There is also a close relationship between maximally consistent sets and
Hintikka sets. Indeed, by reformulating Hintikka sets as unsigned sets of
propositions, it can be shown that every maximal consistent set is a Hintikka
set. However, the converse is not true. Hintikka sets are more general (and in
a sense more economical) than maximal consistent sets. For details, we refer
the reader to the problems.

PROBLEMS 97
PROBLEMS

3.5.1.

3.5.2.

3.5.3.

(i) Show that the infinite sequent I' — A where
['=<Py,(Po D P1),(P1DP), s (P D Pi1)y e >
and
A=<(P,DQ)>
is falsifiable.

(ii) Prove that for every ¢ > 0, the sequent I' — A’ where T is as
above and A’ =< (Py D P;) > is provable.

The cut rule is the following inference rule:

r - AA AAN—0©
IA— A0

A is called the cut formula of this inference.

Let G’ 4 {cut} be the formal system obtained by adding the cut rule
to G’. The notion of a deduction tree is extended to allow the cut
rule as an inference. A proof in G’ is called a cut-free proof.

(i) Prove that for every valuation v, if v satisfies the premises of the
cut rule, then it satisfies its conclusion.

(ii) Prove that if a sequent is provable in the system G’ + {cut}, then
it is valid.

(iii) Prove that if a sequent is provable in G’ + {cut}, then it has a
cut-free proof.

(i) Prove solely in terms of proofs in G’ + {cut} that a set T' of propo-
sitions is inconsistent if and only if there is a proposition A such that
bothI' — A and I — —A are provable in G’ +{cut}. (For inspiration
see Section 3.6.)

(ii) Prove solely in terms of proofs in G’ + {cut} that, I' — A is not
provable in G’ + {cut} if and only if I' U {—A} is consistent. (For
inspiration see Section 3.6.)

Note: Properties (i) and (ii) also hold for the proof system G’, but
the author does not know of any proof not involving a proof-theoretic
version of Gentzen’s cut elimination theorem. The cut elimination
theorem states that any proof in the system G’ + {cut} can be trans-
formed to a proof in G’ (without cut). The completeness theorem for
G’ provides a semantic proof of the cut elimination theorem. How-
ever, in order to show (i) and (ii) without using semantic arguments,
it appears that one has to mimic Gentzen'’s original proof. (See Szabo,
1969.)

98

* 3.5.4.

3.5.5.

3.5.6.

* 3.5.7.

3/Propositional Logic

A set I of propositions is said to be complete if, for every proposition
A, either ' — A or I' — —A is provable, but not both. Prove that
for any set I' of propositions, the following are equivalent:

(i) The set

{A|FT - Ain G}
is a maximal consistent set.
(ii) T is complete.
(iii) There is a single valuation v satisfying T.
(iv) There is a valuation v such that for all A,
I' — A is provable (in G’) if and only if v | A.

Let T" be a consistent set. Let A, As, ..., A,,... be an enumeration
of all propositions in PROP. Define the sequence I';, inductively as
follows:

Iy =T,

r T, U{A,1} i T, U{A,41} is consistent;
AT, otherwise.

Let

A= Urn.

n>0
Prove the following:
(a) Each T, is consistent.
(b) A is consistent.
(¢) A is maximally consistent.

Note that this exercise provides another proof of lemma 3.5.5 for the
system G’ + {cut}, not using the completeness theorem.

Prove that if a proposition A over the language using the logical con-
nectives {V, A, D, —} is a tautology, then A contains some occurrence
of either — or D.

Given a proposition A, its immediate descendants A; and As are
given by the following table:

Type-a formulae

A A A

(X AY) X Y
~(XVY) X Y
~(X>Y) X Y
—(=X) X X

PROBLEMS 99

Type-b formulae

B B By

~(XAY) X Y
(XVY) X Y
(X>Y) -X Y

Note that neither propositional letters nor negations of propositional
letters have immediate descendants.

Given a set S of propositions, let Des(S) be the set of immediate
descendants of propositions in S, and define S™ by induction as fol-
lows:

S0 =S
STl = Des(S™)

Let

n>0

be the union of all the S™. Hintikka sets can also be defined without
using signed formulae, in terms of immediate descendants:

A set S of propositions is a Hintikka set if the following conditions
hold:

(H1) No propositional letter and its negation are both in S.
(H2) If an a-formula A is in S then both A; and Ay are in S.
(H3) If a b-formula B is in S then either By is in S or B isin S.

In this problem and some of the following problems, given any set S
of propositions and any propositions Ay,...,A,, the set SU{A41,...A,}
will also be denoted by {S, 41, ..., A, }.

Assume that S is consistent.

(a) Using a modification of the construction given in problem 3.5.5,
show that S can be extended to a maximal consistent subset U of S*
(that is, to a consistent subset U of S* containing S, such that U is
not a proper subset of any consistent subset of S*).

(b) Prove that consistent sets satisfy the following properties:

Co: No set S containing a propositional letter and its negation is
consistent.

Cq: If {S, A} is consistent, so is {5, A1, As}, where A is a proposition
of type a.

100

* 3.5.8.

3/Propositional Logic

Cy: If {S, B} is consistent, then either {S, By} or {S, By} is consis-
tent, where B is a proposition of type b.

(c) Prove that U is a Hintikka set.

(d) Show that U is not necessarily a maximal consistent subset of
PROP, the set of all propositions.

The purpose of this problem is to prove the compactness theorem
for propositional logic without using the completeness theorem. The
proof developed in the following questions is in a sense more construc-
tive than the proof given by using the completeness theorem, since if
we are given a set I' such that every finite subset of I" is satisfiable,
we will actually construct a valuation that satisfies I'. However, the
existence of ultrafilters requires Zorn’s Lemma, and so this proof is
not constructive in the recursion-theoretic sense.

For this problem, you may use the following result stated below and
known as Zorn’s lemma. For details, the reader should consult a text
on set Theory, such as Enderton, 1977; Suppes, 1972; or Kuratowski
and Mostowski, 1976.

We recall the following concepts from Subsection 2.1.9. A chain in a
poset (P, <) is a totally ordered subset of P. A chain C is bounded
if there exists an element b € P such that for all p € C, p < b. A
maximal element of P is some m € P such that for any m’ € P, if
m < m' then m =m'.

Zorn’s lemma: Given a partially ordered set S, if every chain in S
is bounded, then S has a maximal element.

(1) Let E be a nonempty set, and F' a class of subsets of E. We say
that F is a filter on FE iff:

1. Fisin F;
2. if uw and v are in F, then uNwv is in F;
3. if wisin F and v is any subset of E, if u C v, then v is also in F'.

A filter F is a proper filter if () (the empty set) is not in F'. A proper
filter F' is maximal if, for any other proper filter D, if F' is a subset
of D, then D = F.

A class C (even empty) of subsets of a nonempty set E has the finite
intersection property (f.i.p.) iff the intersection of every finite number
of sets in C is nonempty. Let C be any class of subsets of a nonempty
set E. The filter generated by C is the intersection D of all filters over
FE which include C.

Prove the following properties:

(i) The filter D generated by C is indeed a filter over E.

PROBLEMS 101

* 3.5.9.

(ii) D is equal to the set of all subsets X of E such that either X = E,
or for some Y7,....Y, €C,

Yin..ny, € X.

(iii) D is a proper filter if and only if C has the finite intersection
property.
(2) A maximal proper filter is called an ultrafilter.

Prove that a nonempty collection U of sets with the finite intersection
property is an ultrafilter over F if and only if, for every subset X of
E

)

X eU ifandonlyif (E—X)¢U.

Hint: Assume that (E — X) ¢ U. Let D = U U{X}, and let F be
the filter generated by D (as in question 1). Show that F is a proper
filter including U. Hence, U = F and D is a subset of U, so that
XeUl.

(3) Use Zorn’s lemma to show that if a class C of subsets of a nonempty
set F has the finite intersection property, then it is contained in some
ultrafilter.

Hint: Show that the union of a chain of proper filters is a proper filter
that bounds the chain.

Let I be a nonempty set and V = {v; | i € I'} be a set of valuations.
Let U be a proper filter on I. Define the valuation v such that for
each propositional symbol P € PS,

v(P)=T iff {i|v(P)=T}eU.
(Such a valuation v is called a reduced product).
(a) Show that

W(P)=F iff {i|v0(P)=T}¢U,

and
if {i|v;(P)=T}=0 then ov(P)=F.

If U is an ultrafilter, show that for all propositions A,

vEA It {i|vE A}eU.
Such a valuation v is called the ultraproduct of V' with respect to U.

(b) Show that for any Horn formula A (see problem 3.3.18), whenever
U is a proper filter, if

{i|viEFA} €U then v A

102

* 3.5.10.

* 3.5.11.

3/Propositional Logic
As a consequence, show that for every Horn formula A,

if v; = Aforalliel, thenv = A.

(c) Let I ={1,2}. Give all the filters on I. Give an example showing
that there exists a proper filter U on {1, 2}, a set of valuations {v1,va},
and a proposition A, such that v = A, but {i | v; = A} ¢ U.

(d) Consider the proper filter U = {{1,2}} on I = {1,2}, and let
A = P, V P,. Find two valuations vy and vy such that v; E A and
vy | A, but the reduced product v of vy and ve with respect to U
does not satisfy A. Conclude that not every proposition is logically
equivalent to a Horn formula.

(a) Let T be a set of propositions such that every finite subset of T’
is satisfiable. Let I be the set of all finite subsets of I', and for each
1 € I, let v; be a valuation satisfying i. For each proposition A € T,
let

A*={iel| Aci}.

Let
C={A"| AeT}.

Note that C has the finite intersection property since
{A1,.., A, e ATN..NAS.

By problem 3.5.8, let U be an ultrafilter including C, so that every
A*isin U. If i € A*, then A € i, and so

Vi ': A.
Thus, for every A in I, A* is a subset of {i € I | v; = A}.
Show that each set {i € I | v; = A} isin U.

(b) Show that the ultraproduct v (defined in problem 3.5.9) of the set
of valuations {v; | ¢ € I'} with respect to the ultrafilter U satisfies T'.

Recall the definition of a Horn formula given in problem 3.3.18. Given
a countable set {v; | ¢ > 0} of truth assignments, the product v of
{vi | i > 0} is the truth assignment such that for every propositional
symbol P,

o(P)) = {T if v;(P;) = T, for all v;,
J F otherwise.

(a) Show that if X is a set of propositional Horn formulae and every
truth assignment in {v; | ¢ > 0} satisfies X, then the product v
satisfies X.

PROBLEMS 103

* 3.5.12.

* 3.5.13.

* 3.5.14.

(b) Let
X* ={=P | P is atomic and X I/ P}.

Show that if X is a consistent set of basic Horn formulas, then X UX*
is consistent.

Hint: Using question (a), show that there is a truth assignment v
satisfying X U X*.

In this problem, we are using the definitions given in problem 3.5.7.
Given a set S, a property P about subsets of S (P is a subset of 2°)
is a property of finite character iff the following hold:

Given any subset U of S, P holds for U if and only if P holds for all
finite subsets of U.

A property P about sets of propositions is a consistency property if
P is of finite character and the following hold:

Cy: No set S containing a propositional letter and its negation satis-
fies P.

Cy: If {S, A} satisfies P, so does {S, A1, A>}, where A is a proposition
of type a.

Cy: If {S, B} satisfies P, then either {S, By} or {S, By} satisfies P,
where B is a proposition of type b.

(a) Using Zorn’s lemma (see problem 3.5.7), show that for any set S,
for any property P about subsets of S, if P is of finite character, then

any subset U of S for which P holds is a subset of some maximal
subset of .S for which P holds.

(b) Prove that if P is a consistency property and P satisfies a set U
of propositions, then U can be extended to a Hintikka set.

Hint: Use the technique described in problem 3.5.7.

(¢) Prove that if P is a consistency property and P satisfies a set U
of propositions, then U is satisfiable.

Using the definitions given in problem 3.5.7, show that a maximal

consistent set S is a Hintikka set satisfying the additional property:

My : For every proposition A, A€ S ifandonlyif —A¢S.

In this problem, we also use the definitions of problem 3.5.7. A set .S
of propositions is downward closed iff the following conditions hold:

D;: For every proposition A of type a, if A € S, then both A; and
Ay arein S.

Dy: For every proposition B of type b, if B € S, then either B; is in
S or Byisin S.

104

* 3.5.15.

3/Propositional Logic

A set S of propositions is upward closed iff:

Uy: For every proposition A of type a, if A; and As are both in S,
then A isin S.

Us: For every proposition B of type b, if either By is in S or Bs is in
S, then B isin S.

(a) Prove that any downward closed set satisfying condition My (given
in problem 3.5.13) is a maximal consistent set.

(b) Prove that any upward closed set satisfying condition My is a
maximal consistent set.

Note: Conditions D7 and D5 are conditions H2 and H3 for Hin-
tikka sets. Furthermore, U; and U, state the converse of D1 and Ds.
Hence, the above problem shows that a maximal consistent set is a
set satisfying condition M, and the “if and only if” version of H2 and
H3. Consequently, this reproves that a maximal consistent set is a
Hintikka set.

In the next problems, some connections between logic and the theory
of boolean algebras are explored.

Recall from Section 3.3 that a boolean algebra is a structure A =<
A, 4,%,7,0,1 >, where A is a nonempty set, + and * are binary
functions on A, — is a unary function on A, and 0 and 1 are distinct
elements of A, such that the following axioms hold:

Associativity rules:
(A+B)+C)=(A+(B+C)) (A*B)x(C)=(A*(Bx(C))
Commutativity rules:
(A+B)=(B+A) (Ax*B)=(BxA)
Distributivity rules:
(A+(B=*C)=(A+B)x(A+0C))

(A% (B+C)) = (A B) + (A%C))

De Morgan’s rules:
-(A+B)=(-Ax-B) —(AxB)=(-A+-B)
Idempotency rules:

(A+A)=A4 (AxA)=A
Double negation rule:

—A=A
Absorption rules:
(A+(A+«B))=A (Ax(A+B))=A

Laws of zero and one:

PROBLEMS 105
(A+0)=A (Ax0)=0
(A+1)=1 (A+1)=A
(At-A)=1 (Ax-4)=0

When dealing with boolean algebras, —A is also denoted as A. Given
a boolean algebra A, a partial ordering < is defined on A as follows:

a<b ifandonlyif a+0b=5b.

A filter D is a subset of A such that D is nonempty, for all z,y € D,
xxy € D, and for all z € Aand x € D, if x < 2z, then z € D. A
proper filter is a filter such that 0 ¢ D (equivalently, D # A). (Note
that this is a generalization of the notion defined in problem 3.5.8.)

An ideal is a nonempty subset I of A such that, for all z,y € I,
r+y€el,andforall ze Aandax €, zxz€ 1.

(a) Show that for any (proper) filter D, the set
{Z | x € D}

is an ideal.

Given a filter D, the relation (D) defined by
z(D)y ifandonly if zxy+Txgye D.

is a congruence relation on A. The set of equivalences classes modulo
(D) is a boolean algebra denoted by A/D, whose 1 is D, and whose
0is {Z | z € D}.

(b) Prove that z(D)y if and only if there is some z € D such that
Txz=1yYx*z,

if and only if
rxy+Txy€{x | x € D},
if and only if
Z+y)x@+z)eD.
Note: Intuitively speaking, (T + y) corresponds to the proposition
(z D y)and (T+y) * (J+) to (z =y).
A subset F of A has the finite intersection property iff for any finite

number of elements z1,...,x, € F,

T1* ..o xxy £ 0.

106

* 3.5.16.

* 3.5.17.

3/Propositional Logic
(c) Prove that every subset E with the finite intersection property is
contained in a smallest proper filter. (See problem 3.5.8.)

A filter D is principal iff for some a # 0 in A, x € D if and only if
a < x. A proper filter is an ultrafilter iff it is maximal.

(d) Prove that any set with the finite intersection property can be
extended to an ultrafilter.

(e) If D is an ultrafilter, then
x+yeD iff eitherze DoryeD,
xeD iff T¢D.
Prove that D is an ultrafilter if and only if the quotient boolean alge-

bra A/D is isomorphic to the two-element boolean algebra BOOL.

Let ~ be the proof-theoretic version of the equivalence relation on
PROP defined in problem 3.4.6, so that for any two propositions A
and B,

A~ B if and only if - (A= B) in G".

(a) Show that the set By of equivalence classes modulo ~ is a boolean
algebra if we define the operations +, * and on By as follows:

Also, let 0 = [L] and 1 = [T]. Observe that 0 # 1. The algebra By is
called the Lindenbaum algebra of PROP.

Hint: Use problems 3.4.6 and 3.4.7.

(b) Prove that the following statements are equivalent:

(1) Every consistent set can be extended to a maximal consistent set.
(2) Every filter on By can be extended to an ultrafilter.

Let T be any subset of propositions in PROP. We say that T is
finitely axiomatizable if there is a finite set S of propositions such
that for every proposition A in PROP,

FT— Ain G’ + {cut} ifandonlyif S — Ain G + {cut}.

Let
Dr={[A]| VT — Ain G' + {cut}},

PROBLEMS 107

* 3.5.18.

where [A] denotes the equivalence class of A modulo ~. Prove the
following statements:

(i) T is consistent iff D is a proper filter on By.

(ii) T is consistent and finitely axiomatizable iff Dr is a principal
filter on By.

(iii) T is complete iff Dy is an ultrafilter on By. (For the definition
of a complete set of propositions, See problem 3.5.4).

(iv) T is complete and finitely axiomatizable iff Dr is a principal
ultrafilter on By.

Given a subset D of By, let
Tp ={A € PROP | [A] € D}.

Show that the converses of (i) to (iv) each hold, with T replaced by
Tp and Dr by D.

Say that a set T of propositions is closed if, for every A € PROP,
F T — A implies that A € T. Show that there is a one-to-one cor-
respondence between complete closed extensions of T" and ultrafilters
in B()/DT.

Note: In this problem the cut rule seems necessary to prove that Dp
is a filter, specifically, that if T — A and T — (A D B) in
G’ + {cut}, then - T — B in G’ 4 {cut}. To prove this in G, a form
of Gentzen’s cut elimination theorem seems necessary.

(a) Let A; and Ay be two boolean algebras. A function h: A; — Ay
is a homomorphism if, for all x,y € Ay,

Show that ~(0) =0 and h(1) = 1.

(b) Given a boolean algebra A and a proper filter D, show that the
mapping hp : A — A/D that maps every element a of A to its
equivalence class [a] modulo (D) is a homomorphism.

(c¢) Let T be a consistent set of propositions. The equivalence relation
~1 on PROP is defined as follows:

A~p B ifandonlyif +7 — (A= B)in G + {cut}.

Show that the set B7 of equivalence classes modulo ~7 is a boolean
algebra if we define the operations +, * and on By as follows:

108

3/Propositional Logic

[Alr + [Blr = [AV B|r,
[A]r = [B]r = [A A Blrp,

[Alr = [-A]r.

([A]r denotes the equivalence class of A modulo ~7.) Furthermore,
the element 1 is the equivalence class

{A| FT — Ain G’ + {cut}},
and the element 0 is the class

{A| FT — -Ain G' + {cut}}.

The boolean algebra B is called the Lindenbaum algebra of T. Note
that the equivalence class [A]r of A modulo ~7 is the set

{B| vT — (A= B) in G' + {cut}}.

For any homomorphism h : By — BOOL, let v : PS — BOOL be
defined such that for every propositional letter P,

Show that v is a valuation satisfying T such that 9(A) = h([A]r) for
all A€ PROP.

(d) There is a correspondence between valuations satisfying 7' and
ultrafilters U in Bp defined as follows: For every ultrafilter U in
Br, the quotient algebra Br /U is isomorphic to the boolean algebra
BOOL (see problem 3.5.15(e)). By questions 3.5.18(a) and 3.5.18(b),
there is a valuation vy satisfying T' induced by the homomorphism
from By to By /U. Conversely, if v is a valuation satisfying 7', show
that
U, = {[Alr | 5(4) = T}

is an ultrafilter in Byp.
(e) Prove the extended completeness theorem for G’ + {cut}.

Hint: Assume that T — A is valid, but that A is not provable from T'.
Then, in the Lindenbaum algebra Br, [A]r # 1, and so [-A]r # 0.
Using problem 3.5.15(d), there is an ultrafilter U in Br containing
[-A]r. Since Br/U is isomorphic to BOOL, by questions 3.5.18(c)
and 3.5.18(d), there is a valuation v satisfying T" such that

v(=4) = h([=A]r),

3.6 More on Gentzen Systems: The Cut Rule 109

where h is the homormophism from Bp to Bp/U. Since [~A]r is in
U,
h([=A]r) =T.

Hence, there is a valuation satisfying T" such that v(A) = F. This
contradicts the validity of T — A.

3.5.19. Write a computer program (preferably in PASCAL or C) implement-
ing the extended search procedure of definition 3.5.1.

3.6 More on Gentzen Systems: The Cut Rule

The rules of the Gentzen system G’ given in definition 3.4.2 were chosen so
as to give ourselves as few choices as possible at each step upward in search-
ing systematically for a falsifying valuation. The use of other Gentzen-type
systems may afford simpler proofs, especially working downward. One such
system is the system LK’ due to Gentzen. The system LK’ contains a rule
called the cut rule, which is important from a historical point of view, but
also from a mathematical point of view. Indeed, even though it is possible to
find complete proof systems not using the cut rule, we will discover some un-
expected complications when we study first-order logic with equality. Indeed,
the system for first-order logic with equality not using the cut rule is not very
natural, and the cut rule cannot be dispensed with easily.

3.6.1 Using Auxiliary Lemmas in Proofs

There are also “pragmatic” reasons for considering the cut rule. The cut rule
is the following;:

Ir—-AA AA— 0O
I''A— A0

A is called the cut formula of this inference.

Notice that this rule formalizes the technique constantly used in practice
to use an auziliary lemma in a proof. This is more easily visualized if we
assume that A is empty. Then, I' — A is the auxiliary lemma, which can
be assumed to belong to a catalogue of already-proven results. Now, using A
as an assumption, if we can show that using other assumptions A, that © is
provable, we can conclude that I'; A — © is provable. The conclusion does
not refer to A.

One might say that a proof using the cut rule is not as “direct” and
consequently, not as perspicuous as a proof not using the cut rule. On the
other hand, if we already have a vast catalogue of known results, and we can
use them to give short and “easy” proofs of other results, why force ourselves

110 3/Propositional Logic

not to use the convenience afforded by the cut rule? We shall not try to answer
these questions of a philosophical nature. Let us just make a few remarks.

Let us call a proof not using the cut rule a cut-free proof. Cut-free proofs
are important in investigations regarding consistency results. The object of
such investigations is to establish constructively the consistency of mathe-
matical theories such as arithmetic or set theory, the ultimate goal being to
show that mathematics formalized as a logical theory is free of contradictions.
First-order logic is simple enough that Gentzen’s cut elimination theorem
holds constructively. This means that for every proof using the cut rule, an-
other proof not using the cut rule can effectively be constructed. We shall
give a (nonconstructive) semantic proof of this result in this chapter, and a
constructive proof for a simpler system in Chapter 6. From a mathematical
point of view, this shows that the cut rule can be dispensed with. For richer
logics, such as second-order logic, the cut-elimination theorem also holds, but
not constructively, in the sense that the argument showing that there is a
method for converting a proof with cut to a proof without cut is not effective.

Another interesting issue is to examine the relative complexity of proofs
with or without cut. Proofs with cuts can be much shorter than cut-free
proofs. This will be shown in Chapter 6. However, from the point of view
of automatic theorem proving, cut-free proofs are easier to find. For more on
cut-free proofs and the cut rule, the reader is referred to Takeuti, 1975, and
Pfenning’s paper in Shostack, 1984a.

We now present the system LK’.

3.6.2 The Gentzen System LK’

The system LK’ consists of structural rules, the cut rule, and of logical rules.

Definition 3.6.1 Gentzen system LK'. The letters I',A,A,0 stand for arbi-
trary (possibly empty) sequences of propositions and A,B for arbitrary propo-
sitions.

(1) Structural rules:

(i) Weakening:

r— A r— A)
ar=a e goa g (right)
A is called the weakening formula.
(ii) Contraction:
AAT — A r—-AAA .
AT oA (left) ToAA (right)

3.6 More on Gentzen Systems: The Cut Rule 111
(iii) Exchange:

I, A B,A — A
T.B,A,A — A

I - A,A B, A

(eft) = A B A A

(right)

(2) Cut rule:
I'—-AA AAN— 0O

T,A > A0

A is called the cut formula of this inference.

(3) Logical rules:

ATl — A B,I'— A)
Lood To88 o right)
I A AAB Sy
AT — A B,I'— A)
AVBT oA (Vileft)
I —AA , I'—-AB o
m (\/ : ’I”Lght) and m (\/ : ’I”Lght)
r—-AA B,A—0© AT —- A B o
ASBTAoAe) —xgop CGiright)
r—-AA AT — A o

In the rules above, the propositions AV B, AN B, A D B and —A are
called the principal formulae and the propositions A, B the side formulae.

The azioms of the system LK’ are all sequents of the form

A— A

Note that in view of the exchange rule, the order of propositions in
a sequent is really irrelevant, and the system LK’ could be defined using
multisets as defined in problem 2.1.8.

Proof trees are defined inductively as in definition 3.4.5, but with the
rules of the system LK’ given in definition 3.6.1. If a sequent has a proof
in the system G’ we say that it is G’-provable and similarly, if it is provable
in the system LK’, we say that it is LK’-provable. The system obtained by
removing the cut rule from LK’ will be denoted as LK’ — {cut}. We also say
that a sequent is LK’-provable without a cut if it has a proof tree using the

112 3/Propositional Logic

rules of the system LK’ — {cut}. We now show that the systems G’ and LK’
are logically equivalent. We will in fact prove a stronger result, namely that
G', LK’ —{cut} and LK’ are equivalent. First, we show that the system LK’
is sound.

Lemma 3.6.1 (Soundness of LK') Every axiom of LK’ is valid. For every
rule of LK’, for every valuation v, if v makes all the premises of a rule true
then v makes the conclusion of the rule true. Every LK’-provable sequent is
valid.

Proof: The proof uses the induction principle for proofs and is straight-
forward. O

Note that lemma 3.6.1 differs from lemma 3.4.3 in the following point:
It is not true that if v makes the conclusion of a rule true then v makes all
premises of that rule true. This reveals a remarkable property of the system
G’. The system G’ is a “two way” system, in the sense that the rules can be
used either from top-down or from bottom-up. However, LK’ is a top-down
system. In order to ensure that the inferences are sound, the rules must be
used from top-down.

3.6.3 Logical Equivalence of G', LK’', and LK' — {cut}

The following theorem yields a semantic version of the cut elimination theo-
rem.

Theorem 3.6.1 Logical equivalence of G', LK’, and LK’ — {cut}. There is
an algorithm to convert any LK’-proof of a sequent I' — A into a G'-proof.
There is an algorithm to convert any G’-proof of a sequent I' — A into a
proof using the rules of LK’ — {cut}.

Proof: If ' — A has an LK'-proof, by lemma 3.6.1, ' — A is valid.
By theorem 3.5.2, I' — A has a G’-proof given by the algorithm search.
Note that if ' — A is infinite, then the search procedure gives a proof for a
finite subsequent of I' — A, but by definition 3.6.2, it is a proof of I' — A.
Conversely, using the induction principle for G’-proofs we show that every
G’'-proof can be converted to an (LK’ — {cut})-proof. This argument also
applies to infinite sequents, since a proof of an infinite sequent is in fact a
proof of some finite subsequent of it.

First, every G’-axiom I' — A contains some common proposition A, and
by application of the weakening and the exchange rules, an (LK’ — {cut})-
proof of ' — A can be obtained from the axiom A — A. Next, we have
to show that every application of a G’-rule can be replaced by a sequence of
(LK’ —{cut})-rules. There are eight cases to consider. Note that the G’-rules
A right, V @ left, D: right, D: left, = : right and — : left can easily be
simulated in LK' — {cut} using the exchange, contraction, and corresponding
(LK’ — {cut})-rules. We show how the G'-rule A : left can be transformed to

3.6 More on Gentzen Systems: The Cut Rule 113

a sequence of (LK’ — {cut})-rules, leaving the transformation of the G’-rule
V : right as an exercise. The following is an (LK’ — {cut})-derivation from
IA,B,A — AtoT,AAB,A — A.

T, A B,A — A

(several exchanges)
A,B,TA — A
AANB,B,T,A — A
B,ANB,T,A — A
ANB,ANB,TA — A
ANB,T,A— A

(A left (A))

(exchange)

(A left (B))

(contraction)

(several exchanges)

T,AANB,A — A

O

3.6.4 Gentzen’s Hauptsatz for LK’ (Cut elimination the-
orem for LK")

Theorem 3.6.1 has the following important corollary.

Corollary (Gentzen’s Hauptsatz for LK') A sequent is LK’-provable if and
only if it is LK’-provable without a cut.

Note that the search procedure together with the above procedure pro-
vides an algorithm to construct a cut-free LK’-proof from an LK’-proof with
cut. Gentzen proved the above result by a very different method in which
an LK'-proof is (recursively) transformed into an LK’-proof without cut.
Gentzen’s proof is more structural and syntactical than ours, since we com-
pletely forget about the LK’-proof and start from scratch using the procedure
search. Also, Gentzen’s proof generalizes to the first-order predicate calculus
LK, providing an algorithm for transforming any LK-proof with cut to an LK-
proof without cut. The search procedure will also provide a cut-free proof,
but the argument used in justifying the correctness of the search procedure
is not constructive. The nonconstructive step arises when we show that the
search procedure terminates for a valid sequent. Gentzen’s proof is difficult
and can be found in either Takeuti, 1975; Kleene, 1952; or in Gentzen’s origi-
nal paper in Szabo, 1969. A constructive proof for a simpler system (sequents
of formulae in NNF) will also be given in Chapter 6.

114 3/Propositional Logic

3.6.5 Characterization of Consistency in LK’

The following lemma gives a characterization of consistency in the system
LK'.

Lemma 3.6.2 (1) A set T of propositions is inconsistent if and only if there
is some proposition A such that bothT' — A and I' — —A are LK’-provable.

(2) For any proposition A, the sequent I' — A is not LK'-provable if
and only if ' U {—A} is consistent.

Proof: In this proof, we will abbreviate L K’-provable as provable.

(1) If T is inconsistent then I' — B is provable for any proposition B,
showing that the second half of (1) holds. Conversely, assume that for some A,
bothFT' — A and - T' — —A in LK’, with proofs T} and T. The following
is a proof of I' — B for any given B.

T1 T2
P4 ey T224 e
ﬁA, F — . ﬁﬁA’ F — .
(-:righty " (weakening)
I ——-—A -—AT — B
(cut (-=A4))
rr—B

_— (contractions and exchanges)
'—-B

(2) Assume that I' — A is not provable. If I' U {—A} was inconsistent,
then -A,I' — A would be provable with proof T. The following is a proof of
I' — A, contradicting the hypothesis.

T A— A

- - = 77 (=:right)
-AT — A) — A, A
(= : right) (—:left)
(cut (==4))
I'—AA .
" (contraction)
r—A

Conversely, assume that I'U{—-A} is consistent. If I' — A is provable, a
fortiori I', mA — A is provable. But -A — —A is also provable since it is an
axiom, and so I', mA — — A is provable. By (1), I'U {—A} is inconsistent. [

Remark: Recall that for an infinite set of propositions I', I' — A is
provable if A — A is provable for a finite subsequence A of I'. Hence, the
above proofs should really be modified to refer to finite subsequences of T'.
Using the exchange, weakening and contraction rules, we can ensure that the
antecedent in the conclusion of each proof is a subsequence of I'. We leave
the details as an exercise. Also, note that the above characterizations of

PROBLEMS 115

consistency (or inconsistency) in LK’ are purely syntactic (proof theoretic),
and that the cut rule was used in a crucial way.

PROBLEMS

3.6.1. Give LK'-proof trees for the following tautologies:

AD(BDA)
(ADB)D((AD(BD(C))D(ADCQ))
AD(BD(AANB))
AD(AVvB) BD>(AVDB)
(AD>DB)D((AD-B)D>-A)
(ANB)DA (AANB)DB
(ADC)D>((BDC)D((AvB)DC(C))
-—ADA

3.6.2. Show that the cut rule is not a two-way rule, that is, if a valuation v
satisfies the conclusion of the cut rule, it does not necessarily satisfy
its premises. Find the other rules of LK’ that are not two-way rules.

* 3.6.3. Recall that a set I'" of propositions is mazimally consistent if T is
consistent and for any other set A, if I' is a proper subset of A then
A is inconsistent.

(a) Show that if T' is maximally consistent, for any proposition A such
that I' — A is provable in LK’ (with cut), A isin T

(b) Show that
A={A| FT — Ain LK’ (with cut)}

is maximally consistent if and only if for every proposition A, either
FI' - Aor+T'— —A in LK’, but not both.

(c) Show that I is maximally consistent iff there is a single valuation
v satisfying T'.

(d) Show that T" is maximally consistent iff there is a valuation v such
that v = A if and only if A is in T

3.6.4. Using the technique of problem 3.5.5, prove in LK’ (+{cut}) that
every consistent set can be extended to a maximal consistent set.

* 3.6.5. In this problem, we are adopting the definition of a Hintikka set given
in problem 3.5.6. Let A be a maximally consistent set. To cut down
on the number of cases, in this problem, assume that (A D B) is an
abbreviation for (mAV B), so that the set of connectives is {A,V, —}.

116 3/Propositional Logic

(a) Show that A is a Hintikka set.

(b) Recall that in LK’, T" — A is not provable if and only if TU{—A}
is consistent. Using problem 3.6.4, prove that if I' — A is valid, then
it is provable in LK’ (with cut).

Remark: This provides another proof of the completeness of LK’
(with cut). Note that a proof tree for I' — A is not produced (compare
with theorem 3.4.1).

3.6.6. Prove that the extended completeness theorem and the model exis-
tence theorem are equivalent for LK'. (This is also true for LK’ —
{cut}, but apparently requires the cut elimination theorem).

3.6.7. Implement a computer program (preferably in PASCAL or C) con-
verting an LK'-proof into a cut-free LK’-proof. Compare and inves-
tigate the relative lengths of proofs.

Notes and Suggestions for Further Reading

We have chosen Gentzen systems as the main vehicle for presenting proposi-
tional logic because of their algorithmic nature and their conceptual simplicity.
Our treatment is inspired from Kleene, 1967 and Kleene, 1952. For more on
Gentzen systems, the reader should consult Takeuti, 1975; Szabo, 1969; or
Smullyan, 1968.

We believe that the use of Hintikka sets improves the clarity of the proof
of the completeness theorem. For more details on Hintikka sets and related
concepts such as consistency properties, the reader is referred to Smullyan,
1968.

There are other proof systems for propositional logic. The Hilbert sys-
tem H discussed in problems 3.4.9 to 3.4.12 is from Kleene, 1967, as well as
the natural deduction system used in problems 3.4.11 and 3.4.12. For more on
natural deduction systems, the reader is referred to Van Dalen, 1980; Prawitz
1965; or Szabo, 1969. A variant of Gentzen systems called tableaux systems
is discussed at length in Smullyan, 1968.

The relationship between boolean algebra and logic was investigated by
Tarski, Lindenbaum, Rasiowa, and Sikorski. For more details, the reader is
referred to Chang and Keisler, 1973, or Bell and Slomson, 1974. Exercise
3.5.18 is adapted from Bell and Slomson, 1974.

The proof of Gentzen’s cut elimination theorem can be found in Kleene,
1952; Takeuti, 1975; and Szabo, 1969.

