Linear Temporal Logic - Syntax

\[
\varphi ::= p \mid (\varphi) \mid \neg \varphi \mid \varphi \land \varphi' \mid \varphi \lor \varphi' \\
\mid \circ \varphi \mid \varphi U \varphi' \mid \varphi V \varphi' \mid \Box \varphi \mid \Diamond \varphi
\]

- \(p \) – a proposition over state variables
- \(\circ \varphi \) – “next”
- \(\varphi U \varphi' \) – “until”
- \(\varphi V \varphi' \) – “releases”
- \(\Box \varphi \) – “box”, “always”, “forever”
- \(\Diamond \varphi \) – “diamond”, “eventually”, “sometime”

LTL Semantics: The Idea

- \(p \) – \(p \)
- \(\circ \varphi \) – \(\varphi \)
- \(\varphi U \varphi' \) – \(\varphi \varphi \psi \)
- \(\varphi V \varphi' \) – \(\psi \)
- \(\Box \varphi \) – \(\varphi \)
- \(\Diamond \varphi \) – \(\varphi \)

Formal LTL Semantics

Given:
- \(G = (V, F, af, ar) \) signature expressing state propositions
- \(Q \) set of states,
- \(M \) modeling function over \(Q \) and \(G \); \(M(q, p) \) is true iff \(q \) models \(p \).
- Write \(q \models p \).
- \(\sigma = q_0 q_1 \ldots q_n \ldots \) infinite sequence of state from \(Q \).
- \(\sigma^i = q_i q_{i+1} \ldots q_n \ldots \) the \(i \)th tail of \(\sigma \).

Say \(\sigma \) models LTL formula \(\varphi \), write \(\sigma \models \varphi \) as follows:
- \(\sigma \models p \) iff \(q_0 \models p \)
- \(\sigma \models \neg \varphi \) iff \(\sigma \not\models \varphi \)
- \(\sigma \models \varphi \land \psi \) iff \(\sigma \models \varphi \) and \(\sigma \models \psi \).
- \(\sigma \models \varphi \lor \psi \) iff \(\sigma \models \varphi \) or \(\sigma \models \psi \).

Some Common Combinations

- \(\Box \Diamond p \) “\(p \) will hold infinitely often”
- \(\Diamond \Box p \) “\(p \) will continuously hold from some point on”
- \((\Box p) \Rightarrow (\Diamond q) \) “if \(p \) happens infinitely often, then so does \(q \)”

Some Equivalences

- \(\Box (\varphi \land \psi) = (\Box \varphi) \land (\Box \psi) \)
- \(\Diamond (\varphi \lor \psi) = (\Diamond \varphi) \lor (\Diamond \psi) \)
- \(\Box \varphi = T (\varphi U \varphi) \)
- \(\Diamond \varphi = U (\Diamond \varphi) \)
- \(\varphi U \psi = \neg (\neg \varphi) (\psi) \)
- \(\varphi V \psi = \neg (\neg \varphi) (\psi) \)
- \(\neg (\Diamond \varphi) = \Diamond (\neg \varphi) \)
- \(\neg (\Box \varphi) = \Box (\neg \varphi) \)
Important Meta-Definitions

- A is sound with respect to B if things that are "true" according to A are things that are "true" according to B.
- A is complete with respect to B if things that are "true" according to B are things that are "true" according to A.
- A is sound if things that are "true" according to A are true.
- A is complete if things that are "true" according to A are true.
- A is relatively complete if things that are "true" according to A are true.
- A is sound with respect to B if A is complete when B is.
- Think: A proof system, B mathematical model; or A a proof system, B a subsystem.

Traffic Light Example

Basic Behavior:
- $\Box((\text{NSC} = \text{Red}) \lor (\text{NSC} = \text{Green}) \lor (\text{NSC} = \text{Yellow}))$
- $\Box((\text{NSC} = \text{Red}) \Rightarrow ((\text{NSC} \neq \text{Green}) \land (\text{NSC} \neq \text{Yellow})))$
- Similarly for Green and Red
- $\Box((\text{NSC} = \text{Red}) \land o(\text{NSC} \neq \text{Red}) \Rightarrow o(\text{NSC} = \text{Green}))$
- Same as $\Box((\text{NSC} = \text{Red}) \Rightarrow ((\text{NSC} = \text{Red}) U (\text{NSC} = \text{Green})))$
- $\Box((\text{NSC} = \text{Green}) \land o(\text{NSC} = \text{Green}) \Rightarrow o(\text{NSC} = \text{Yellow}))$
- $\Box(((\text{NSC} = \text{Yellow}) \land o(\text{NSC} \neq \text{Yellow}) \Rightarrow o(\text{NSC} = \text{Red}))$
- Same for EWC

Traffic Light Example

Basic Safety
- $\Box((\text{NSC} = \text{Red}) \lor (\text{EWC} = \text{Red}))$
- $\Box((\text{NSC} = \text{Red}) \land (\text{EWC} = \text{Red})) V ((\text{NSC} \neq \text{Green}) \Rightarrow (\Box (\text{NSC} = \text{Red}) \lor (\text{NC} \neq \text{Green})))$

Basic Liveness
- $\Diamond(\text{NSC} = \text{Red}) \land (\Diamond (\text{NSC} = \text{Green}) \lor (\Diamond (\text{NSC} = \text{Yellow})))$
- $\Diamond(\text{EWC} = \text{Red}) \land (\Diamond (\text{EWC} = \text{Green}) \lor (\Diamond (\text{EWC} = \text{Yellow})))$

Proof System for LTL

- First step: View $\varphi \lor \psi$ as macro: $\varphi \lor \psi = \neg ((\neg \varphi) U (\neg \psi))$
- Second Step: Extend all rules of Prop Logic to LTL
- Third Step: Add one more rule: $\Box \varphi \Rightarrow \varphi$
- Fourth Step: Add a collection of axioms (a sufficient set of 8 exists)
 - A1: $\Box \varphi \Rightarrow \neg (\Diamond \neg \varphi)$
 - A2: $\Box (\varphi \Rightarrow \psi) \Rightarrow (\Box \varphi \Rightarrow \Box \psi)$
 - A3: $\Box \varphi \Rightarrow (\varphi \land \Diamond \varphi)$
 - A4: $\Diamond \varphi \Rightarrow o \varphi$
 - A5: $o (\varphi \Rightarrow \Box \varphi) \Rightarrow (o \varphi \Rightarrow o \varphi)$
 - A6: $\Box (\varphi \Rightarrow \Diamond \varphi) \Rightarrow (\Box \varphi \Rightarrow \Box \Diamond \varphi)$
 - A7: $\varphi U \psi \Rightarrow (\varphi \land \Diamond (\Box \varphi \land \Diamond \psi))$
 - A8: $\varphi U \psi \Rightarrow o \Diamond \varphi$
- Result: a sound and relatively complete proof system
- Can implement in Isabelle in much the same way as we did Hoare Logic
What is Model Checking?

Most generally **Model Checking** is
- an automated technique, that given
- a finite-state model \(M \) of a system
- and a logical property \(\varphi \),
- checks whether the property holds of model: \(M \models \varphi \)?

Model Checking

- Model checkers usually give example of failure if \(M \not\models \varphi \).
- This makes them useful for debugging.
- **Problem**: Can only handle finite models: unbounded or continuous data sets can’t be directly handled
 - Symbolic model checking can handle limited cases of finitely presented models
- **Problem**: Number of states grows exponentially in the size of the system.
- **Answer**: Use abstract model of system
- **Problem**: Relationship of results on abstract model to real system?

LTL Model Checking

- **Model Checking Problem**: Given model \(M \) and logical property \(\varphi \) of \(M \), does \(M \models \varphi \)?
- Given transition system with states \(Q \), transition relation \(\delta \) and initial state \(I \), say \((Q, \delta, I) \models \varphi \) for LTL formula \(\varphi \) if every run of \((Q, \delta, I), \sigma \) satisfies \(\sigma \models \varphi \).

Theorem

The Model Checking Problem for finite transition systems and LTL formulæ is decidable.

- Treat states \(q \in Q \) as letters in an alphabet.
- Language of \((Q, \delta, I) \), \(L(Q, \delta, I) \) (or \(L(Q) \) for short) is set of runs in \(Q \)
- Language of \(\varphi \), \(L(\varphi) = \{ \sigma | \sigma \models \varphi \} \)
- Question: \(L(Q) \subseteq L(\varphi) \)?
- Same as: \(L(Q) \cap L(\neg \varphi) = \emptyset \)?

How to Decide the Model Checking Problem?

- How to answer \(L(Q) \cap L(\neg \varphi) = \emptyset \)?
- **Common approach**:
 - Build automaton \(A \) such the \(L(A) = L(Q) \cap L(\neg \varphi) \)
 - Are accepting states of \(A \) reachable? (Infinitely often?)
- How to build \(A \)?
 - One possible answer: Build a series of automata by recursion on structure of \(\neg \varphi \).
 - Another possible answer: Build an automaton \(B \) such \(L(B) = L(\neg \varphi) \); take \(A = B \times Q \)
- Will do at least one approach if time after Spin