CS477 Formal Software Development Methods

Elsa L Gunter
2112 SC, UIUC
egunter@illinois.edu
http://courses.engr.illinois.edu/cs477

Slides based in part on previous lectures by Mahesh Vishwanathan, and by Gul Agha

March 21, 2014
Simple Imperative Programming Language #2

\[I \in Identifiers \]
\[N \in Numerals \]
\[E ::= N \mid I \mid E + E \mid E \ast E \mid E - E \mid I ::= E \]
\[B ::= \text{true} \mid \text{false} \mid B \& B \mid B \text{ or } B \mid \text{not } B \]
\[\mid E < E \mid E = E \]
\[C ::= \text{skip} \mid C; C \mid \{C\} \mid E \]
\[\mid \text{if } B \text{ then } C \text{ else } C \text{ fi} \]
\[\mid \text{while } B \text{ do } C \]
Transition Semantics

- Aka “small step semantics” or “Structured Operational Semantics”
- Defines a relation of “one step” of computation, instead of complete evaluation
 - Determines granularity of atomic computations
- Typically have two kinds of “result”: configurations and final values
- Written \((C, m) \rightarrow (C', m')\) or \((C, m) \rightarrow m'\)
I \in \text{Identifiers}

N \in \text{Numerals}

E ::= N \mid I \mid E + E \mid E \cdot E \mid E - E

B ::= \text{true} \mid \text{false} \mid B \& B \mid B \lor B \mid \text{not } B

\mid E < E \mid E = E

C ::= \text{skip} \mid C; C \mid \{C\} \mid I ::= E

\mid \text{if } B \text{ then } C \text{ else } C \text{ fi}

\mid \text{while } B \text{ do } C
skip means done evaluating

When evaluating an assignment, evaluate expression first

If the expression being assigned is a value, update the memory with the new value for the identifier

When evaluating a sequence, work on the first command in the sequence first

If the first command evaluates to a new memory (ie completes), evaluate remainder with new memory
Commands

Skip: \((\text{skip}, m) \rightarrow m\)

Assignment: \[
\begin{align*}
(E, m) &\rightarrow (E', m) \\
(l ::= E, m) &\rightarrow (l ::= E', m) \\
(l ::= V, m) &\rightarrow m[l \leftarrow V]
\end{align*}
\]

Sequencing:
\[
\begin{align*}
(C, m) &\rightarrow (C'', m') \\
(C; C', m) &\rightarrow (C''; C', m') \\
(C, m) &\rightarrow m' \\
(C; C', m) &\rightarrow (C', m')
\end{align*}
\]
Choice of level of granularity:

- Choice 1: Open a block is a unit of work

 \[
 (\{C\}, m) \rightarrow (C, m)
 \]

- Choice 2: Blocks are syntactic sugar

 \[
 (C, m) \rightarrow (C', m') \\
 \{C\}, m) \rightarrow (C', m') \\
 (C, m) \rightarrow m' \\
 \{C\}, m) \rightarrow m'
 \]
If the boolean guard in an `if_then_else` is true, then evaluate the first branch.
If it is false, evaluate the second branch.
If the boolean guard is not a value, then start by evaluating it first.
If Then Else Command

(if true then \(C \) else \(C' \) fi, \(m \)) \(\rightarrow \) \((C, m)\)

(if false then \(C \) else \(C' \) fi, \(m \)) \(\rightarrow \) \((C', m)\)

\((B, m) \rightarrow (B', m)\)

(if \(B \) then \(C \) else \(C' \) fi, \(m \)) \(\rightarrow \) (if \(B' \) then \(C \) else \(C' \) fi, \(m \))
(while B do C, m)

\rightarrow

(if B then C; while B do C else skip fi, m)

In English: Expand a while into a test of the boolean guard, with the true case being to do the body and then try the while loop again, and the false case being to stop.
(\(y := i; \text{ while } i > 0 \text{ do } \{i := i - 1; y := y * i\}, \langle i \mapsto 3 \rangle\))

\[\rightarrow ___________\]
Alternate Semantics for SIMPL1

- Can mix Natural Semantics with Transition Semantics to get larger atomic computations
- Use \((E, m) \downarrow v\) and \((B, m) \downarrow b\) for arithmetics and boolean expressions
- Revise rules for commands
Revised Rules for SIMPL1

Skip: \[(\text{skip}, m) \rightarrow m\]

Assignment: \[
\frac{(E, m) \downdownarrows v}{(l ::= E, m)} \rightarrow m[l \leftarrow V]\]

Sequencing:
\[
\frac{(C, m) \rightarrow (C'', m')}{(C; C', m) \rightarrow (C''; C', m')} \quad \frac{(C, m) \rightarrow m'}{(C; C', m) \rightarrow (C', m')}\]

Blocks:
\[
\frac{(C, m) \rightarrow (C', m')}{\{C\}, m) \rightarrow (C', m')} \quad \frac{(C, m) \rightarrow m'}{\{C\}, m) \rightarrow m'}\]

If Then Else Command

\[
(B, m) \downarrow \text{true} \\
\text{(if } B \text{ then } C \text{ else } C' \text{ fi, } m) \rightarrow (C, m)
\]

\[
(B, m) \downarrow \text{false} \\
\text{(if } B \text{ then } C \text{ else } C' \text{ fi, } m) \rightarrow (C', m)
\]
While Command

\[
(B, m) \Downarrow \text{true} \\
(\text{while } B \text{ do } C, m) \rightarrow (C; \text{while } B \text{ do } C, m)
\]

\[
(B, m) \Downarrow \text{false} \\
(\text{while } B \text{ do } C, m) \rightarrow m
\]

- Other more fine grained options exist (eg rule given before)
Transition Semantics for SIMPL2?

- What are the choices and consequences for giving a transition semantics for the Simple Concurrent Imperative Programming Language #2, SIMP2?
- For finest grain transitions, summary:
 - Each rule for arithmetic or boolean expression must propagate changes to memory; instead of transitioning to a value, go to a value - memory pair
Transition Semantics for SIMPL2

- Second assignment rule returns value:

\[(I ::= V, m) \rightarrow (V, m[I ← V])\]

- Expressions as commands need two rules:

\[(E, m) \rightarrow (E', m')\]
\[(E, m) \rightarrow (V, m')\]
\[(E, m) \rightarrow (E', m')\]
\[(E, m) \rightarrow m'\]

Exp. as Comm.:

\[(E, m) \rightarrow (E', m')\]
\[(E, m) \rightarrow (E', m)\]
Identifiers
N \in \text{Numerals}
E ::= N \mid I \mid E + E \mid E \ast E \mid E - E
B ::= \text{true} \mid \text{false} \mid B \& B \mid B \text{ or } B \mid \text{not } B
\mid E < E \mid E = E
C ::= \text{skip} \mid C; C \mid \{C\} \mid I ::= E \mid C \parallel C'
\mid \text{if } B \text{ then } C \text{ else } C \text{ fi}
\mid \text{while } B \text{ do } C
Semantics for $C_1 || C_2$ means that the actions of C_1 and done at the same time as, “in parallel” with, those of C_2

True parallelism hard to model; must handle collisions on resources

What is the meaning of

$$x := 1 || x := 0$$

True parallelism exists in real world, so important to model correctly
Weaker alternative: interleaving semantics

Each process gets a turn to commit some atomic steps; no preset order of turns, no preset number of actions

No collision for \(x := 1 \parallel x := 0 \)
- Yields only \(\langle x \mapsto 1 \rangle \) and \(\langle x \mapsto 0 \rangle \); no collision

No simultaneous substitution: \(x := y \parallel y := x \) results in \(x \) and \(y \) having the same value; not in swapping their values.
Coarse-Grained Interleaving Semantics for SCIMPL1 Commands

- Skip, Assignment, Sequencing, Blocks, If_Then_Else, While unchanged
- Need rules for \parallel

\[
\frac{(C_1, m) \rightarrow (C'_1, m')}{(C_1 \parallel C_2, m) \rightarrow (C'_1 \parallel C_2, m')} \\
\frac{(C_1, m) \rightarrow m'}{(C_1 \parallel C_2, m) \rightarrow (C_2, m')} \\
\frac{(C_2, m) \rightarrow (C'_2, m')}{(C_1 \parallel C_2, m) \rightarrow (C_1 \parallel C'_2, m')} \\
\frac{(C_2, m) \rightarrow m'}{(C_1 \parallel C_2, m) \rightarrow (C_1, m')}
\]
Simple Concurrent Imperative Programming Language #2 (SCIMP2)

\[I \in \text{Identifiers} \]

\[N \in \text{Numerals} \]

\[E ::= N \mid I \mid E + E \mid E \times E \mid E - E \]

\[B ::= \text{true} \mid \text{false} \mid B \& B \mid B \text{ or } B \mid \text{not } B \]

\[| E < E \mid E = E \]

\[C ::= \text{skip} \mid C; C \mid \{ C \} \mid I ::= E \mid C || C' \mid \text{sync}(E) \]

\[| \text{if } B \text{ then } C \text{ else } C \text{ fi} \]

\[| \text{while } B \text{ do } C \]
Informal Semantics of sync

- \(\text{sync}(E) \) evaluates \(E \) to a value \(v \)
- Waits for another parallel command waiting to synchronize on \(v \)
- When two parallel commands are both waiting to synchronize on a value \(v \), they may both stop waiting, move past the synchronization, and carry on with whatever commands they each have left
- Only two processes may synchronize at a time (in this version).
- Problem: How to formalize?
A labeled transition system (LTS) is a 4-tuple \((Q, \Sigma, \delta, I)\) where

- \(Q\): set of states
 - \(Q\) finite or countably infinite

- \(\Sigma\): set of labels (aka actions)
 - \(\Sigma\) finite or countably infinite

- \(\delta\) \(\subseteq Q \times \Sigma \times Q\) transition relation

- \(I\) \(\subseteq Q\) initial states

Note: Write \(q \xrightarrow{\alpha} q'\) for \((q, \alpha, q') \in \delta\).
Example: Candy Machine

\[Q = \{ \text{Start}, \text{Select}, \text{GetMarsBar}, \text{GetKitKatBar} \} \]
\[I = \{ \text{Start} \} \]
\[\Sigma = \{ \text{Pay}, \text{ChooseMarsBar}, \text{ChooseKitKatBar}, \text{TakeCandy} \} \]

\[\delta = \left\{ \begin{array}{l}
(\text{Start, Pay, Select}) \\
(\text{Select, ChooseMarsBar, GetMarsBar}) \\
(\text{Select, ChooseKitKatBar, GetKitKatBar}) \\
(\text{GetMarsBar, TakeCandy, Start}) \\
(\text{GetKitKatBar, TakeCandy, Start})
\end{array} \right\} \]