Simple Imperative Programming Language #?2
CS477 Formal Software Development Methods
€ lIdentifiers
€

/

Elsa L Gunter N Numerals

2112 5C, UIUC E = N|I|E+E|E+xE|E-E|lu=E

egunter@illinois.edu B e al BLE | B or B B
http://courses.engr.illinois.edu/cs477 = true | false | | Bor B not
|E<E|E=E
C == skip| G;C|{C}|E
Slides based in part on previous lectures by Mahesh Vishwanathan, and | if B then C else C fi
by Gul Agha
March 21, 2014 | while B do C

Elsa L Gunter () CS477 Formal Software Development Methoc / Elsa L Gunter () CS477 Formal Software Development Methoc

Transition Semantics Simple Imperative Programming Language #1 (SIMPL1)
I € Identifiers
o Aka “small step semantics” or “Structured Operational Semantics” N e Numerals
@ Defines a relation of “one step” of computation, instead of complete E = N|I/I|E+E|ExE|E-E
evaluation
. . . . B = true| false | B&B | B or B | not B
o Determines granularity of atomic computations

@ Typically have two kinds of “result”: configurations and final values |E<E|E=E

e Written (C,m) — (C',m’) or (C,m) — m’ C == skip| G, C|{C}|I=:=E
| if B then C else C fi
| while B do C

Elsa L Gunter () CS477 Formal Software Development Methoc Elsa L Gunter () CS477 Formal Software Development Methoc

Commands - in English Commands

o skip means done evaluating Skip: (skip, m) — m

@ When evaluating an assignment, evaluate expression first (E,m) — (E',m)

o If the expression being assigned is a value, update the memory with Assignment: (I = E,m) — (I == E',m)
the new value for the identifier ’ '

@ When evaluating a sequence, work on the first command in the (I ==V,m) — m[l + V]
sequence first)

o If the first command evaluates to a new memory (ie completes), Squ’zTiggz_) (",) (C.m) —

evaluate remainder with new memory

(C;C',m) — (C";C',m") (C;C',m)— (C',m)

Elsa L Gunter () CS477 Formal Software Development Methoc Elsa L Gunter () CS477 Formal Software Development Methoc

Block Command If Then Else Command - in English

@ Choice of level of granularity:
o Choice 1: Open a block is a unit of work

({(C},m) — (C, m) o If the boolean guard in an if then else is true, then evaluate the

’ ’ first branch

Choice 2 Block) o If it is false, evaluate the second branch

° olice Z: ocks are syntactic sugar .
Y & o If the boolean guard is not a value, then start by evaluating it first.

(C,m) — (C',m") (C,m) — m’

(¢t m) —(C".m") ({Ch.m) —

Elsa L Gunter () CS477 Formal Software Development Methoc / Elsa L Gunter ()

CS477 Formal Software Development Methoc

If Then Else Command While Command

(if true then C else C' fi, m) — (C, m)
(while B do C, m)
—

if B then C;while B do C else skip fi,
(if false then C else C' fi, m) — (C', m) (en Ciwhile B do C else skip fi, m)
o In English: Expand a while into a test of the boolean guard, with the
true case being to do the body and then try the while loop again, and
(B,m) — (B',m) the false case being to stop.

(if B then C else C' fi, m) — (if B’ then C else C' fi, m)

Elsa L Gunter () CS477 Formal Software Development Methoc Elsa L Gunter ()

CS477 Formal Software Development Methoc

o Can mix Natural Semantics with Transition Semantics to get larger
(y:=iwhilei>0do{i:=i-1y:=y*i},(i—3)) atomic computations

@ Use (E,m) | v and (B, m) || b for arithmetics and boolean

— 7 .
E— expressions

@ Revise rules for commmands

Elsa L Gunter () CS5477 Formal Software Development Methoc Elsa L Gunter ()

CS477 Formal Software Development Methoc

Revised Rules for SIMPL1 If Then Else Command

Skip: (skip, m) — m
E.m)lv
Assignment: & — m[l + V] (B, m) | true
oo (/2= £, m) (if B then C else C' i, m) —» (C.m)
equencing:
(C7m) — (CH7 m,) (C7 m) —m

(C; C',m) N (C//; C/,m/) (C, C/7 ITI) N (C/7 m/) (B7 m) »U« false
(if B then C else C' fi,m) — (C', m)

Blocks:

(C7 m) - (C,a m,) (C7 m) —m

({ctm —(¢.m) ({C}m)—

Elsa L Gunter () CS477 Formal Software Development Methoc / Elsa L Gunter () CS477 Formal Software Development Methoc /"

While Command Transition Semantics for SIMPL2?

(B, m) | true
(while B do C, m) — (C;while B do C, m)

@ What are the choices and consequences for giving a transition
semantics for the Simple Concurrent Imperative Programming
Language #2, SIMP2?

(B, m) |l false @ For finest grain transitions, summary:

e Each rule for aritmetic or boolean expression must propagate changes
to memory; instead of transitioning to a value, go to a value - memory
pair

(while B do C,m) — m

o Other more fine grained options exist (eg rule given before)

Elsa L Gunter () CS477 Formal Software Development Methoc Elsa L Gunter () CS477 Formal Software Development Methoc

Transition Semantics for SIMPL2 Simple Concurrent Imperative Programming Language
(SCIMP1)
@ Second assignment rule returns value:
(I ==V,m)— (V,m[l + V]) I € Identifiers
N € Numerals
o Expressions as commands need two rules: E w= NJI|E+E[ExE|E-E
, , B = true|false | B&B | B or B | not B
(E,m) — (E',m') (E,m) — (V,m')
|E<E|E=E
(E,m) — (E',m’) (E,m) — m’
C == skip| C;C|{C}|I==E|C|C
(E,m) — (E',m) | if B then C else C fi
Exp. as Comm.: ———M .
(E,m) — (E',m) | while B do C

Elsa L Gunter () CS477 Formal Software Development Methoc Elsa L Gunter () CS477 Formal Software Development Methoc

Semantics for Interleaving Semantics

@ (|G, means that the actions of C; and done at the same time as,
“in parallel” with, those of C;
@ True parallelism hard to model; must handle collisions on resources

o What is the meaning of
x:=1||x:=0

@ True parallelism exists in real world, so important to model correctly

Elsa L Gunter () CS477 Formal Software Development Methoc

Coarse-Grained Interleaving Semantics for SCIMPL1
Commands

@ Skip, Assignment, Sequencing, Blocks, If_Then_Else, While unchanged
@ Need rules for ||
(C17 m) — (C{ m,)

(Gl G.m) — (G| G, m')

(Ci,m) — m'
(C1H C2, m) — (Cz, ITI/)

(C27 ITI) - (Cé m/)

(Gl G.m) — (G G, m')

(G, m) — m’
(Gl Gy m) — (Ci,m')

o Weaker alternative: interleving semantics
o Each process gets a turn to commit some atomic steps; no preset
order of turns, no preset number of actions
@ No collision for x :=1||x:=0
e Yields only (x — 1) and (x — 0); no collision
o No simultaneous substitution: x :=y||y := x results in x and y having
the same value; not in swapping their values.

Elsa L Gunter () CS477 Formal Software Development Methoc

Simple Concurrent Imperative Programming Language #2
(SCIMP2)

—

€ Identifiers
€ Numerals
N|I|E+E|E+E|E—E
= true | false | B&B | B or B | not B
|E<E|E=E
C == skip| G, C|{C}|I:=:=E|C|C"|sync(E)
| if B then C else C fi
| while B do C

W m =
Il

CS477 Formal Software Development Methoc

Elsa L Gunter () CS477 Formal Software Development Methoc

Elsa L Gunter ()

Informal Semantics of sync Labeled Transition System (LTS)

@ sync(E) evaluates E to a value v
o Waits for another parallel command waiting to synchronize on v

@ When two parallel commands are both waiting to synchronize on a
value v, they may both stop waiting, move past the synchronization,
and carry on with whatever commands they each have left

@ Only two processes may synchronize at a time (in this version).
@ Problem: How to formalize?

A labeled tranistion system (LTS) is a 4-tuple (Q, %, 4, /)

where
o @ set of states
o @ finite or countably infinite

o X set of labels (aka actions)
o X finite or countably infinite

e 0 C Q X X x @ transition relation
o | C Q initial states
Note: Write g — ¢’ for (g,c,q') € 6.

CS477 Formal Software Development Methoc

Elsa L Gunter ()

CS477 Formal Software Development Methoc

Elsa L Gunter ()

Example: Candy Machine

Q = {Start, Select, GetMarsBar, GetKitKatBar}
| = {Start}
Y = {Pay, ChooseMarsBar, ChooseKitKatBar, TakeCandy}

(Start, Pay, Select)

(Select, ChooseMarsBar, GetMarsBar)
@ § = ¢ (Select, ChooseKitKatBar, GetKitKatBar)
(
(

GetMarsBar, TakeCandy, Start)
GetKitKatBar, TakeCandy, Start)

Elsa L Gunter () CS477 Formal Software Development Methoc

