CS477 Formal Software Dev Methods

Elsa L Gunter
2112 SC, UIUC
goingter@illinois.edu
http://courses.engr.illinois.edu/cs477

Slides based in part on previous lectures
by Mahesh Vishwanathan, and by Gul Agha

February 28, 2018
Embedding logics in HOL

- Problem: How to define logics and their meaning in HOL?
- Two approaches: deep or shallow
- Shallow: use propositions of HOL as propositions of defined logic
- Example of shallow: Propositional Logic in HOL (just restrict the terms)
 - Can’t always have such a simple inclusion
 - Reasoning easiest in “defined” logic when possible
 - Can’t reason about defined logic this way, only in it.
Embedding logics in HOL

- Alternative - Deep:
 - Terms and propositions: elements in data types,
 - Assignment: function from variables (names) to values
 - “Satisfies”: function of assignment and proposition to booleans
 - Can always be done
 - More work to define, more work to use than shallow embedding
 - More powerful, can reason about defined logic as well as in it
- Can combine two approaches
What is the Meaning of a Hoare Triple?

- Hoare triple \(\{P\} \ C \ \{Q\} \) means that
 - if \(C \) is run in a state \(S \) satisfying \(P \), and \(C \) terminates
 - then \(C \) will end in a state \(S' \) satisfying \(Q \)

- Implies states \(S \) and \(S' \) are (can be viewed as) assignments of variables to values

- States are **abstracted** as functions from variables to values

- States are **modeled** as functions from variables to values
How to Define Hoare Logic in HOL?

- Deep embedding always possible, more work
- Is shallow possible?
- Two parts: Code and conditions
- Shallowest possible:
 - Code is function from states to states
 - Expression is function from states to values
 - Boolean expression is function from states to booleans
 - Conditions are function from states to booleans, since boolean expressions occur in conditions

 Problem: Can’t do case analysis on general type of functions from states to states

- Can’t do case analysis or induction on code
- Solution: go a bit deeper
Recursive data type for Code (think BNF Grammar)
Keep expressions, boolean expressions almost as before
Expressions: functions from states to values
Boolean expressions: functions from states to booleans
Conditions: function from states to booleans (i.e. boolean expressions)
Note: Constants, variables are expressions, so are functions from states to values
What functions are they?
HOL Types for Shallow Part of Embedding

```haskell
type_synonym var_name = "string"

type_synonym 'data state = "var_name ⇒ ’data"

type_synonym 'data exp = " ’data state ⇒ ’data"
```

- We are parametrizing by ’data
- Can instantiate later with int of real, or role your own
HOL Terms for Shallow Part of Embedding

Need to lift constants, variables, boolean and arithmetic operators to functions over states:

- **Constants:**

 definition k ::
 \[\texttt{'}data \Rightarrow \texttt{'}data \exp \text{ where } \]
 \[\texttt{k c} \equiv \lambda s. \ c \]

- **Variables:**

 definition rev_app :: \[\texttt{var \ name} \Rightarrow \texttt{'}data \ exp \ ("($)"") \]
 \[\text{where } \texttt{"$ x} \equiv \lambda s. \ s \ x" \]

- **We will add more when we specify a specific type of data**
Boolean Expressions

Can be complete about boolean

type_synonym 'data bool_exp = "'data state ⇒ bool"

definition Bool :: "bool ⇒ 'data bool_exp" where
"Bool b s = b"

definition true_b :: "'data bool_exp" where
"true_b ≡λs. True"

definition false_b :: "'data bool_exp" where
"false_b ≡λs. False"
We want the usual logical connectives no matter what type data has:

```plaintext
definition and_b :: ''data bool exp ⇒ 'data bool exp ⇒ 'data bool exp''
    (infix "[\&]" 100) where
    "(a \& b) ≡ λs. ((a s) ∧ (b s))"
```

```plaintext
definition and_b :: ''data bool exp ⇒ 'data bool exp ⇒ 'data bool exp''
    (infix "[\vee]" 100) where
    "(a \vee b) ≡ λs. ((a s) ∨ (b s))"
```
Meaning of Satisfaction

Need to be able to ask when a state satisfies, or \textit{models} a proposition:

\begin{verbatim}
definition models :: "'data state ⇒'data bool_exp ⇒bool" (infix "|=" 90)
where "(s|=b) ≡b s"

definition bvalid :: "'data bool_exp ⇒bool" ("|="")
where "|=b ≡(∀s. b s)"
\end{verbatim}
Reasoning about Propositions

Show the inference rules for Propositional Logic hold here:

lemma bvalid_and_bI:
"\[\[\models P; \models Q \] \Rightarrow \models (P \land Q) \]

lemma bvalid_and_bE [elim]:
"\[\[\models (P \land Q); \[\models P; \models Q \] \Rightarrow R \] \Rightarrow R \]

lemma bvalid_or_bLI [intro]: "\[\models P \Rightarrow \models (P \lor Q) \]

lemma bvalid_or_bRI [intro]: "\[\models Q \Rightarrow \models (P \lor Q) \]
Use the shallowness

definition substitute :: "('data state ⇒ 'a) ⇒ var_name ⇒ 'data exp ⇒ ('data state ⇒ 'a)"

where
"p[x⇐ e] ≡ λ s. p(λ v. if v = x then e(s) else s(v))"

Prove this satisfies all equations for substitution:

lemma same_var_subst: "x[x⇐ e] = e"
lemma diff_var_subst: "[x ≠ y] ⇒ y[x⇐ e] = y"
lemma plus_e_subst:
 "(a [+] b)[x⇐ e] = (a[x⇐ e])[+] (b[x⇐ e])"
lemma less_b_subst:
 "(a [<] b)[x⇐ e] = (a[x⇐ e])[<] (b[x⇐ e])"
datatype command =
 AssignCom "var_name" "'data exp" (infix "::=" 61)
| SeqCom "command" "command" (infixl ";;" 60)
| CondCom "'data bool_exp" "command" "command"
 ("IF _/ THEN _/ ELSE _/ FI" [0,0,0]60)
| WhileCom "'data bool_exp" "command"
 ("WHILE _/ DO _/ OD" [0,0]60)
Defining Hoare Logic Rules

inductive valid :: "'data bool_exp ⇒ command ⇒ 'data bool_exp ⇒ 'data bool"
("{{}}_{{}}_{{}}_{{}}_{{}}_{{}}_60\) where
AssignmentAxiom: "{{(P[x←e])}}(x::=e) {{P}}" |
SequenceRule:
"[[{{P}}C {{Q}}; {{Q}}C’ {{R}}]]
⇒ {{P}}(C;C’){{R}}" |
RuleOfConsequence: "[[|=\(P \rightarrow\) P’) ; {{P’}}C{{Q’}}; |=\(Q’ \rightarrow\) Q]]
⇒ {{P}}C{{Q’}}" |
IfThenElseRule: "[[{{(P ∧ B)}}C{{Q}}; {{(P[∧](¬B)}})C’{{Q}}]]
⇒ {{P}}(IF B THEN C ELSE C’ FI){{Q}}" |
WhileRule: "[[{{(P ∧ B)}}C{{P}}]]
⇒ {{P}}(WHILE B DO C OD){{(P ∧ (¬B)}})"
Using Shallow Part of Embedding

- Need to fix a type of `data`.
- Will fix it as `int`:
  ```
  type_synonym data = "int"
  ```
- Need to lift constants, variables, arithmetic operators, and predicates to functions over states.
- Already have constants (via `k`) and variables (via `$`).
- Arithmetic operations:
  ```
  definition plus_e :: "exp ⇒ exp ⇒ exp" (infixl "[+]" 150)
  where "(p [+] q) ≡ λs. (p s + (q s))"
  ```

Example: \(x \times x + (2 \times x + 1) \) becomes

```
"x' ' [×] 'x' ' [+] k 2 [×] 'x' ' [+] k 1"
```
Arithmetic relations:

```
definition less_b :: "exp ⇒ exp ⇒ ’data bool exp"
  (infix "[<]" 140) where "(a [<] b)s ≡ (a s) < (b s)"
```

Boolean operators:

Example: \(x < 0 \land y \neq z \) becomes

"$’’x’’’’ [<] k 0 [∧] [¬]($’’y’’’’ [=] $’’z’’’’)"
We will give verification conditions for an annotated version of our simple imperative language

Add a presumed invariant to each while loop

\[
\langle \text{command} \rangle ::= \langle \text{variable} \rangle := \langle \text{term} \rangle \\
| \langle \text{command} \rangle ; \ldots ; \langle \text{command} \rangle \\
| \text{if} \ ' \text{datastatement} \ ' \text{then} \langle \text{command} \rangle \ \text{else} \langle \text{command} \rangle \\
| \text{while} \ ' \text{datastatement} \ ' \ \text{inv} \ ' \text{datastatement} \ ' \ \text{do} \langle \text{command} \rangle
\]
Hoare Logic for Annotated Programs

Assignement Rule
\[
\{P[e/x]\} x := e \{P\}
\]

Rule of Consequence
\[
P \Rightarrow P' \quad \{P'\} \quad C \quad \{Q'\} \quad Q' \Rightarrow Q
\]
\[
\{P\} \quad C \quad \{Q\}
\]

Sequencing Rule
\[
\{P\} \quad C_1 \quad \{Q\} \quad \{Q\} \quad C_2 \quad \{R\}
\]
\[
\{P\} \quad C_1; \quad C_2 \quad \{R\}
\]

If Then Else Rule
\[
\{P \land B\} \quad C_1 \quad \{Q\} \quad \{P \land \neg B\} \quad C_2 \quad \{Q\}
\]
\[
\{P\} \quad \text{if } B \text{ then } C_1 \text{ else } C_2 \quad \{Q\}
\]

While Rule
\[
\{P \land B\} \quad C \quad \{P\}
\]
\[
\{P\} \quad \text{while } B \text{ inv } P \text{ do } C \quad \{P \land \neg B\}
\]