CS477 Formal Software Development Methods

Elsa L Gunter
2112 SC, UIUC
egunter@illinois.edu
http://courses.engr.illinois.edu/cs477

Slides based in part on previous lectures by Mahesh Vishwanathan, and by Gul Agha

March 7, 2014
Problem: How to define logic and their meaning in HOL?

Two approaches: deep or shallow

Shallow: use propositions of HOL as propositions of defined logic

Example of shallow: Propositional Logic in HOL (just restrict the terms)
 - Can’t always have such a simple inclusion
 - Reasoning easiest in “defined” logic when possible
 - Can’t reason about defined logic this way, only in it.
Embedding logics in HOL

- Alternative - Deep:
 - Terms and propositions: elements in data types,
 - Assignment: function from variables (names) to values
 - “Satisfies”: function of assignment and proposition to booleans
 - Can always be done
 - More work to define, more work to use than shallow embedding
 - More powerful, can reason about defined logic as well as in it
- Can combine two approaches
What is the Meaning of a Hoare Triple?

- Hoare triple {P} C {Q} means that
 - if C is run in a state S satisfying P, and C terminates
 - then C will end in a state S' satisfying Q
- Implies states S and S' are (can be viewed as) assignments of variables to values
- States are abstracted as functions from variables to values
- States are modeled as functions from variables to values
How to Define Hoare Logic in HOL?

- Deep embedding always possible, more work
- Is shallow possible?
- Two parts: Code and conditions
- Shallowest possible:
 - Code is function from states to states
 - Expression is function from states to values
 - Boolean expression is function from states to booleans
 - Conditions are function from states to booleans, since boolean expressions occur in conditions
- Problem: Can’t do case analysis on general type of functions from states to states
- Can’t do case analysis or induction on code
- Solution: go a bit deeper
Recursive data type for Code (think BNF Grammar)

Keep expressions, boolean expressions almost as before

Expressions: functions from states to values

Boolean expressions: functions from states to booleans

Conditions: function from states to booleans (i.e. boolean expressions)

Note: Constants, variables are expressions, so are functions from states to values

What functions are they?
HOL Types for Shallow Part of Embedding

```
type_synonym var_name = "string"
type_synonym 'data state = "var_name \Rightarrow 'data"
type_synonym 'data exp = "'data state \Rightarrow 'data"
```

- We are parametrizing by `data`.
- Can instantiate later with `int` of `real`, or role your own.
HOL Terms for Shallow Part of Embedding

Need to lift constants, variables, boolean and arithmetic operators to functions over states:

- **Constants:**

 \[
 \text{definition } k ::
 \text{"'}data \Rightarrow \text{'}data \text{ exp" where } \\
 \text{"k } c \equiv \lambda s. \ c"
 \]

- **Variables:**

 \[
 \text{definition rev_app ::
 "var_name } \Rightarrow \text{'}data \text{ exp" ("($)\) where } \\
 \text{"$ } x \equiv \lambda s. \ s \ x"
 \]

- We will add more when we specify a specific type of data
Can be complete about boolean

type_synonym 'data bool_exp = "'data state ⇒ bool"

definition Bool :: "bool ⇒ 'data bool_exp" where
"Bool b s = b"

definition true_b :: "'data bool_exp" where
"true_b ≡ λs. True"

definition false_b :: "'data bool_exp" where
"false_b ≡ λs. False"
We want the usual logical connectives no matter what type data has:

definition and_b :: "'data bool_exp ⇒ 'data bool_exp ⇒ 'data bool_exp"
 (infix "[∧]" 100) where
 "(a [∧] b) ≡ λs. ((a s) ∧ (b s))"

definition or_b :: "'data bool_exp ⇒ 'data bool_exp ⇒ 'data bool_exp"
 (infix "[∨]" 100) where
 "(a [∨] b) ≡ λs. ((a s) ∨ (b s))"
Meaning of Satisfaction

- Need to be able to ask when a state satisfies, or models a proposition:

```
definition models :: "'data state ⇒'data bool_exp ⇒bool" (infix "|=" 90)
where
"(s|=b) ≡b s"

definition bvalid :: "'data bool_exp ⇒bool" ("|=")
where
"|=b ≡(∀s. b s)"
```
Reasoning about Propositions

Show the inference rules for Propositional Logic hold here:

lemma bvalid_and_bI:
"[[|=P; |=Q] \implies |= (P [\land] Q)"

lemma bvalid_and_bE [elim]:
"[[|= (P [\land] Q); [[|=P; |=Q]] \implies R] \implies R"

lemma bvalid_or_bLI [intro]: " |=P \implies |= (P [\lor] Q)"

lemma bvalid_or_bRI [intro]: " |=Q \implies |= (P [\lor] Q)"
How to Handle Substitution

Use the shallowness

definition substitute :: "('data state ⇒ 'a) ⇒ var_name ⇒ 'data exp ⇒ ('data state ⇒ 'a)"

where
"p[x← e] ≡ λ s. p(λ v. if v = x then e(s) else s(v))"

Prove this satisfies all equations for substitution:

lemma same_var_subst: "$x[x← e] = e"
lemma diff_var_subst: "[x ≠ y] ⇒ $y[x← e] = $y"
lemma plus_e_subst:
"(a[+] b)[x← e] = (a[x← e])[+] (b[x← e])"
lemma less_b_subst:
"(a [<] b)[x← e] = (a[x← e])[<] (b[x← e])"
HOL Type for Deep Part of Embedding

datatype command =
 AssignCom "var_name" "'data exp"
 | SeqCom "command" "command"
 | CondCom "'data bool_exp" "command" "command"
 | WhileCom "'data bool_exp" "command"
Defining Hoare Logic Rules

inductive valid :: "'data bool_exp ⇒ command ⇒ 'data bool_exp ⇒ 'data bool"
("{{_}}_{{_}}") [120,120,120]60)where
AssignmentAxiom:
"{{(P [x⇐e])}}(x:=e) {{P}}" |
SequenceRule:
"[[{{P}}C {{Q}}; {{Q}}C' {{R}}]]
⇒ {{P}}(C;C'){{R}}" |
RuleOfConsequence:
"[[|=(P [→] P') ; {{P'}}C{{Q'}}; |=(Q' [→] Q)]
⇒ {{P}}C{{Q}}" |
IfThenElseRule:
"[[{{(P [∧] B)}}C{{Q}}; {{(P[∧](¬B))}}C'{{Q}}]]
⇒ {{P}}(IF B THEN C ELSE C' FI){{Q}}" |
WhileRule:
"[[{{(P [∧] B)}}C{{P}}]]
⇒ {{P}}(WHILE B DO C OD){{(P [∧] (¬B))}}"
Using Shallow Part of Embedding

- Need to fix a type of data.
- Will fix it as **int**:

  ```
  type_synonym data = "int"
  ```

- Need to lift constants, variables, arithmetic operators, and predicates to functions over states
- Already have constants (via \(k \)) and variables (via \($ \)).

- Arithmetic operations:

  ```
  definition plus_e :: "exp ⇒exp ⇒exp" (infixl "[+]" 150)
  where "(p [+] q) ≡ λs. (p s + (q s))"
  ```

Example: \(x \times x + (2 \times x + 1) \) becomes

```
"'x' [×] 'x' [+ k 2 [×] 'x' [+ k 1])"
```
Using Shallow Part of Embedding

- Arithmetic relations:

 \[\text{definition less_b :: } \exp \Rightarrow \exp \Rightarrow \text{'data bool_exp} \]
 \[(\text{infix } "[<]" 140) \text{ where } "(a [<] b)s \equiv (a s) < (b s)" \]

- Boolean operators:

 Example: \(x < 0 \land y \neq z \) becomes

 "$'\ 'x' ' [<] k 0 \ [\land\] [\neg\] ($'\ 'y' ' [=] $'\ 'z' ')$"
DEMO
Annotated Simple Imperative Language

- We will give verification conditions for an annotated version of our simple imperative language
- Add a presumed invariant to each while loop

\[
\langle \text{command} \rangle ::= \langle \text{variable} \rangle := \langle \text{term} \rangle \\
| \langle \text{command} \rangle ; \ldots ; \langle \text{command} \rangle \\
| \text{if } \langle \text{datastatement} \rangle \text{ then } \langle \text{command} \rangle \text{ else } \langle \text{command} \rangle \\
| \text{while } \langle \text{datastatement} \rangle \text{ inv } \langle \text{datastatement} \rangle \text{ do } \langle \text{command} \rangle
\]
Hoare Logic for Annotated Programs

Assignment Rule

\[
\{P[e/x]\} \times := e \{P\}
\]

Rule of Consequence

\[
P \Rightarrow P' \quad \{P'\} \ C \quad \{Q'\} \quad Q' \Rightarrow Q
\]

\[
\{P\} \ C \quad \{Q\}
\]

Sequencing Rule

\[
\begin{align*}
\{P\} \ C_1 \ & \ \{Q\} \\
\{Q\} \ C_2 \ & \ \{R\}
\end{align*}
\]

\[
\{P\} \ C_1; \ C_2 \ \{R\}
\]

If Then Else Rule

\[
\begin{align*}
\{P \land B\} \ & \ C_1 \ \{Q\} \\
\{P \land \neg B\} \ & \ C_2 \ \{Q\}
\end{align*}
\]

\[
\{P\} \ if \ B \ then \ C_1 \ else \ C_2 - 2 \ \{Q\}
\]

While Rule

\[
\begin{align*}
\{P \land B\} \ & \ C \ \{P\}
\end{align*}
\]

\[
\{P\} \ while \ B \ inv \ P \ do \ C \ \{P \land \neg B\}
\]