CS477 Formal Software Dev Methods

Elsa L Gunter
2112 SC, UIUC
egunter@illinois.edu
http://courses.engr.illinois.edu/cs477

Slides based in part on previous lectures
by Mahesh Vishwanathan, and by Gul Agha

February 23, 2018
Floyd-Hoare Logic

- Also called Axiomatic Semantics
- Based on formal logic (first order predicate calculus)
- Logical system built from axioms and inference rules
- Mainly suited to simple imperative programming languages
- Ideas applicable quite broadly
Floyd-Hoare Logic

- Used to formally prove a property (post-condition) of the state (the values of the program variables) after the execution of program, assuming another property (pre-condition) of the state holds before execution.
Floyd-Hoare Logic

- Goal: Derive statements of form

\[
\{ P \} \ C \ \{ Q \}
\]

- \(P \), \(Q \) logical statements about state, \(P \) precondition, \(Q \) postcondition, \(C \) program

- Example:

\[
\{ x = 1 \} \ x := x + 1 \ \{ x = 2 \}
\]
Approach: For each type of language statement, give an axiom or inference rule stating how to derive assertions of form

\[\{P\} \ C \ \{Q\} \]

where \(C \) is a statement of that type

Compose axioms and inference rules to build proofs for complex programs
An expression $\{P\} \ C \ \{Q\}$ is a partial correctness statement.

For total correctness must also prove that C terminates (i.e. doesn't run forever).

Written: $[P] \ C \ [Q]$

Will only consider partial correctness here.
Simple Imperative Language

- We will give rules for simple imperative language

\[
\langle \text{command} \rangle ::= \langle \text{variable} \rangle ::= \langle \text{term} \rangle \\
| \langle \text{command} \rangle ; \ldots ; \langle \text{command} \rangle \\
| \text{if } \langle \text{statement} \rangle \text{ then } \langle \text{command} \rangle \text{ else } \langle \text{command} \rangle \\
| \text{while } \langle \text{statement} \rangle \text{ do } \langle \text{command} \rangle
\]

- Could add more features, like for-loops
Substitution

- Notation: $P[e/v]$ (sometimes $P[v \rightarrow e]$)
- Meaning: Replace every v in P by e
- Example:

$$(x + 2)[y - 1/x] = ((y - 1) + 2)$$
The Assignment Rule

\[\{ P[e/x] \} \ x \ := \ e \ \{ P \} \]

Example:

\[\{ \ ? \ } \ x \ := \ y \ \{ \ x \ = \ 2 \} \]
The Assignment Rule

\[
\{ P[e/x] \} \ x := e \ \{ P \}
\]

Example:

\[
\{ \boxed{=} 2 \} \ x := y \ \{ \boxed{x} = 2 \}
\]
The Assignment Rule

\[
\{ P[e/x] \} \quad x := e \quad \{ P \}
\]

Example:

\[
\{ x = 2 \} \quad x := y \quad \{ x = 2 \}
\]
The Assignment Rule

\[
\{ P[e/x] \} \ x := e \
\{ P \}
\]

Examples:

\[
\{ y = 2 \} \ x := y \ \{ x = 2 \}
\]

\[
\{ y = 2 \} \ x := 2 \ \{ y = x \}
\]

\[
\{ x + 1 = n + 1 \} \ x := x + 1 \ \{ x = n + 1 \}
\]

\[
\{ 2 = 2 \} \ x := 2 \ \{ x = 2 \}
\]
What is the weakest precondition of

\[x := x + y \{ x + y = wx \} ? \]

\[
\begin{array}{c}
\{ \quad ? \quad \} \\
\{ x := x + y \} \\
\{ x + y = wx \} \\
\end{array}
\]
What is the weakest precondition of

\[x := x + y \{ x + y = wx \}? \]

\{ (x + y) + y = w(x + y) \}
\[x := x + y \]
\{ x + y = wx \}
Precondition Strengthening

\[(P \Rightarrow P') \{P'\} \ C \ \{Q\} \]

\[\{P\} \ C \ \{Q\}\]

- Meaning: If we can show that \(P\) implies \(P'\) (i.e. \((P \Rightarrow P')\)) and we can show that \(\{P\} \ C \ \{Q\}\), then we know that \(\{P\} \ C \ \{Q\}\).

- \(P\) is stronger than \(P'\) means \(P \Rightarrow P'\).
Precondition Strengthening

Examples:

\[x = 3 \Rightarrow x < 7 \quad \{ x < 7 \} \quad x := x + 3 \quad \{ x < 10 \} \]

\[\{ x = 3 \} \quad x := x + 3 \quad \{ x < 10 \} \]

\[\text{True} \Rightarrow (2 = 2) \quad \{ 2 = 2 \} \quad x := 2 \quad \{ x = 2 \} \]

\[\{ \text{True} \} \quad x := 2 \quad \{ x = 2 \} \]

\[x = n \Rightarrow x + 1 = n + 1 \quad \{ x + 1 = n + 1 \} \quad x := x + 1 \quad \{ x = n + 1 \} \]

\[\{ x = n \} \quad x := x + 1 \quad \{ x = n + 1 \} \]
Which Inferences Are Correct?

\[
\begin{align*}
\{x > 0 \land x < 5\} & \quad x := x * x \quad \{x < 25\} \\
\{x = 3\} & \quad x := x * x \quad \{x < 25\} \\
\{x > 0 \land x < 5\} & \quad x := x * x \quad \{x < 25\} \\
\{x * x < 25\} & \quad x := x * x \quad \{x < 25\} \\
\{x > 0 \land x < 5\} & \quad x := x * x \quad \{x < 25\}
\end{align*}
\]
Which Inferences Are Correct?

\[
\begin{array}{c}
\{x > 0 \land x < 5\} \quad x := x \times x \quad \{x < 25\} \\
\{x = 3\} \quad x := x \times x \quad \{x < 25\} \\
\{x > 0 \land x < 5\} \quad x := x \times x \quad \{x < 25\} \\
\{x \times x < 25\} \quad x := x \times x \quad \{x < 25\} \\
\{x > 0 \land x < 5\} \quad x := x \times x \quad \{x < 25\}
\end{array}
\]

YES
Which Inferences Are Correct?

\[
\begin{align*}
\{x > 0 \land x < 5\} & \quad x := x \times x \quad \{x < 25\} \quad \text{YES} \\
\{x = 3\} & \quad x := x \times x \quad \{x < 25\}
\end{align*}
\]

\[
\begin{align*}
\{x = 3\} & \quad x := x \times x \quad \{x < 25\} \quad \text{NO} \\
\{x > 0 \land x < 5\} & \quad x := x \times x \quad \{x < 25\}
\end{align*}
\]

\[
\begin{align*}
\{x \times x < 25\} & \quad x := x \times x \quad \{x < 25\} \\
\{x > 0 \land x < 5\} & \quad x := x \times x \quad \{x < 25\}
\end{align*}
\]
Which Inferences Are Correct?

\[
\begin{align*}
\{x > 0 \land x < 5\} & \quad x := x \times x \quad \{x < 25\} & \quad \text{YES} \\
\{x \leq 3\} & \quad x := x \times x \quad \{x < 25\}
\end{align*}
\]

\[
\begin{align*}
\{x = 3\} & \quad x := x \times x \quad \{x < 25\} & \quad \text{NO} \\
\{x > 0 \land x < 5\} & \quad x := x \times x \quad \{x < 25\}
\end{align*}
\]

\[
\begin{align*}
\{x \times x < 25\} & \quad x := x \times x \quad \{x < 25\} & \quad \text{YES} \\
\{x > 0 \land x < 5\} & \quad x := x \times x \quad \{x < 25\}
\end{align*}
\]
Post Condition Weakening

\[
\{P\} \quad C \quad \{Q'\} \quad Q' \Rightarrow Q
\]

\[
\{P\} \quad C \quad \{Q\}
\]

Example:

\[
\{x + y = 5\} \quad x := x + y \quad \{x = 5\} \quad (x = 5) \Rightarrow (x < 10)
\]

\[
\{x + y = 5\} \quad x := x + y \quad \{x < 10\}
\]
Rule of Consequence

\[P \Rightarrow P' \quad \{P'\} \quad C \quad \{Q'\} \quad Q' \Rightarrow Q \]
\[\{P\} \quad C \quad \{Q\} \]

- Logically equivalent to the combination of **Precondition Strengthening** and **Postcondition Weakening**
- Uses \(P \Rightarrow P \) and \(Q \Rightarrow Q \)
Sequencing

\[
\begin{align*}
\{P\} & \quad C_1 \quad \{Q\} \quad \{Q\} \quad C_2 \quad \{R\} \\
\{P\} & \quad C_1; \quad C_2 \quad \{R\}
\end{align*}
\]

- **Example:**

\[
\begin{align*}
\{z = z \land z = z\} & \quad x := z \quad \{x = z \land z = z\} \\
\{x = z \land z = z\} & \quad y := z \quad \{x = z \land y = z\} \\
\{z = z \land z = z\} & \quad x := z; \quad y := z \quad \{x = z \land y = z\}
\end{align*}
\]
If Then Else

\[
\begin{align*}
\{ P \land B \} & \quad C_1 \quad \{ Q \} \\
\{ P \land \neg B \} & \quad C_2 \quad \{ Q \}
\end{align*}
\]

\[
\{ P \} \quad \text{if } B \text{ then } C_1 \text{ else } C - 2 \quad \{ Q \}
\]

Example:

\[
\{ y = a \} \quad \text{if } x < 0 \text{ then } y := y - x \text{ else } y := y + x \quad \{ y = a + |x| \}
\]

By If Then Else Rule suffices to show:

- (1) \(\{ y = a \land x < 0 \} \quad y := y - x \quad \{ y = a + |x| \} \) and
- (4) \(\{ y = a \land \neg(x < 0) \} \quad y := y + x \quad \{ y = a + |x| \} \)
\begin{align*}
\text{(1)} \quad \{ y = a \land x < 0 \} & \quad y := y - x \quad \{ y = a + |x| \} \\
\text{(2)} \quad \{ y - x = a + |x| \} & \quad y := y - x \quad \{ y = a + |x| \} \\
\text{(3)} \quad (y = a \land x < 0) \Rightarrow (y = a + |x|) & \\
\end{align*}

- (1) reduces to (2) and (3) by Precondition Strengthening
- (2) instance of Assignment Axiom
- (3) holds since $x < 0 \Rightarrow |x| = -x$
(4) \(\{ y = a \land \neg(x < 0) \} \ y := y + x \ \{ y = a + |x| \} \)

(6) \((y = a \land \neg(x < 0)) \Rightarrow (y + x = a + |x|) \)

(5) \(\{ y + x = a + |x| \} \ y := y + x \ \{ y = a + |x| \} \)

(4) reduces to (5) and (6) by Precondition Strengthening

(5) Follows from Assignment Axiom

(6) since \(\neg(x < 0) \Rightarrow |x| = x \)
If Then Else

(1) \(\{ y = a \land x < 0 \} \quad y := y - x \quad \{ y = a + |x| \} \)

(4) \(\{ y = a \land \lnot(x < 0) \} \quad y := y + x \quad \{ y = a + |x| \} \)

\(\{ y = a \} \) if \(x < 0 \) then \(y := y - x \) else \(y := y + x \) \(\{ y = a + |x| \} \)

by the If_Then_Else Rule
We need a rule to be able to make assertions about `while` loops.

- Inference rule because we can only draw conclusions if we know something about the body

- Let's start with:

\[
\{ \ ? \ \} \ C \ \{ \ ? \ \} \\
\{ \ ? \ \} \ while \ B \ do \ C \ \{ P \}
\]
While

- Loop may never execute
- To know \(P \) holds after, it had better hold before
- Second approximation:

\[
\{ \ ? \ \} \ C \ \{ \ ? \ \}
\]

\[
\{ P \} \ while \ B \ do \ C \ \{ P \}
\]
Loop may execute C; enf of loop is of C

P holds at end of while means P holds at end of loop C

P holds at start of while; loop taken means $P \land B$ holds at start of C

Third approximation:

$$\{P \land B\} \ C \ \{P\}$$

$$\{P\} \ \text{while} \ B \ \text{do} \ C \ \{P\}$$
Always know $\neg B$ when *while* loop finishes

Final *While* rule:

$\{P \land B\} \ C \ \{P\}$

$\{P\} \ while \ B \ do \ C \ \{P \land \neg B\}$
\[
\begin{align*}
\{P \land B\} & \quad C \quad \{P\} \\
\{P\} & \quad \text{while } B \quad \text{do } C \quad \{P \land \neg B\}
\end{align*}
\]

- \(P\) satisfying this rule is called a \textit{loop invariant}
- Must hold before and after each iteration of the loop
While rule generally used with precondition strengthening and postcondition weakening

No algorithm for computing P in general

Requires intuition and an understanding of why the program works
Example

Prove:

\[\{ n \geq 0 \} \]
\[x := 0; \quad y := 0; \]
\[\text{while } x < n \text{ do} \]
\[(y := y + ((2 \times x) + 1); \]
\[x := x + 1) \]
\[\{ y = n \times n \} \]
Example

Need to find P that is true before and after loop is executed, such that

$$(P \land \neg (x < n)) \implies y = n \ast n$$
First attempt:

\[y = x \times x \]

Motivation:

- Want \(y = n \times n \)
- \(x \) counts up to \(n \)

Guess: Each pass of loop calculates next square
By Post-condition Weakening, suffices to show:

(1) \{ n \geq 0 \}
 \begin{align*}
 x & := 0; \\ y & := 0; \\ while \ x & < n \ do \\
 (y & := y + ((2 \ast x) + 1); \ x := x + 1) \\
 \{ y = x \ast x \land \neg(x < n) \}
 \end{align*}

and

(2) (y = x \ast x \land \neg(x < n)) \Rightarrow (y = n \ast n)
Problem with (2)

- Want (2) \((y = x \times x \land \neg(x < n)) \Rightarrow (y = n \times n)\)
- From \(\neg(x < n)\) have \(x \geq n\)
- Need \(x = n\)
- Don’t know this; from this could have \(x > n\)
- Need stronger invariant
- Try adding \(x \leq n\)
- Then have \(((x \leq n) \land \neg(x < n)) \Rightarrow (x = n)\)
- Then have \(x = n\) when loop done
Example

Second attempt:

\[P = ((y = x \times x) \land (x \leq n)) \]

Again by Post-condition Weakening, suffices to show:

1. \(\{ n \geq 0 \} \)
 \[
 x := 0; \ y := 0; \quad \text{while } x < n \text{ do}
 \]
 \[
 (y := y + ((2 \times x) + 1); \ x := x + 1) \quad \{ (y = x \times x) \land (x \leq n) \land \neg (x < n) \}
 \]

and

2. \(((y = x \times x) \land (x \leq n) \land \neg (x < n)) \Rightarrow (y = n \times n) \)
Proof of (2)

- \(\neg(x < n) \Rightarrow (x \geq n) \)
- \(((x \geq n) \land (x \leq n)) \Rightarrow (x = n) \)
- \(((x = n) \land (y = x \times x)) \Rightarrow (y = n \times n) \)
For (1), set up While Rule using Sequencing Rule
By Sequencing Rule, suffices to show

(3) \(\{ n \geq 0 \} \quad x := 0; \quad y := 0 \quad \{(y = x \ast x) \land (x \leq n)\} \)

and

(4) \(\{(y = x \ast x) \land (x \leq n)\} \)

\textit{while} \(x < n \) \textit{do}

\((y := y + ((2 \ast x) + 1); \quad x := x + 1) \)
\(\{(y = x \ast x) \land (x \leq n) \land \neg(x < n)\} \)
Proof of (4)

By While Rule

\[(5) \quad \{(y = x \cdot x) \land (x \leq n) \land (x < n)\}\]
\[\begin{align*}
 & y := y + ((2 \cdot x) + 1); \ x := x + 1 \\
 & \{(y = x \cdot x) \land (x \leq n)\}
\end{align*}\]

\[\frac{\{(y = x \cdot x) \land (x \leq n)\}}{\{(y = x \cdot x) \land (x \leq n)\}}\]

while \(x < n\) do
\[(y := y + ((2 \cdot x) + 1); \ x := x + 1)\]
\[\{(y = x \cdot x) \land (x \leq n) \land \neg(x < n)\}\]
Proof of (5)

By Sequencing Rule

\[(6) \quad \{(y = x \times x) \land (x \leq n) \land (x < n)\} \quad \text{and} \quad \{(y = (x + 1) \times (x + 1)) \land ((x + 1) \leq n)\}\]

\[
y := y + ((2 \times x) + 1) \quad \text{and} \quad x := x + 1
\]

\[
\{(y = (x + 1) \times (x + 1)) \land ((x + 1) \leq n)\}
\]

\[
\{(y = x \times x) \land (x \leq n) \land (x < n)\}
\]

\[
y := y + ((2 \times x) + 1); \quad x := x + 1
\]

\[
\{(y = x \times x) \land (x \leq n)\}
\]

(7) holds by Assignment Axiom
Proof of (6)

By Precondition Strengthening

\[(\text{8}) \quad (y = x \times x) \wedge (x \leq n) \wedge (x < n) \Rightarrow (((y + ((2 \times x) + 1)) = (x + 1) \times (x + 1)) \wedge ((x + 1) \leq n)) \]

\[(\text{9}) \quad \{((y + ((2 \times x) + 1)) = ((x + 1) \times (x + 1))) \wedge ((x + 1) \leq n)\} \]

\[
\{(y = x \times x) \wedge (x \leq n) \\
\wedge (x < n)\} \\
y := y + ((2 \times x) + 1) \\
\{(y = (x + 1) \times (x + 1)) \wedge ((x + 1) \leq n)\} \\
\}

Have (9) by Assignment Axiom
Proof of (8)

- (Assuming x integer) $(x < n) \Rightarrow ((x + 1) \leq n)$
- $(y = x \times x) \Rightarrow ((y + ((2 \times x) + 1))$
 $$= ((x \times x) + ((2 \times x) + 1))$$
 $$= ((x + 1) \times (x + 1)))$$

That finishes (8), and thus (6) and thus (5) and thus (4) (while)

Need (3) $\{n \geq 0\}$ $x := 0; \ y := 0 \ \{(y = x \times x) \land (x \leq n)\}$
Proof of (3)

By Sequencing

\[(10) \quad \{ n \geq 0 \} \quad x := 0 \quad \{(0 = x \cdot x) \land (x \leq n)\}\]

\[(11) \quad \{ (0 = x \cdot x) \land (x \leq n) \} \quad y := 0 \quad \{(y = x \cdot x) \land (x \leq n)\}\]

\[\{ n \geq 0 \} \quad x := 0; \quad y := 0 \quad \{(y = x \cdot x) \land (x \leq n)\}\]

Have (11) by Assignment Axiom
Proof of (10)

By Precondition Strengthening

(12) \((n \geq 0) \Rightarrow ((0 = 0 \times 0) \land (0 \leq n))\)

\[\begin{align*}
\{n \geq 0\} & \quad x := 0 \quad \{(0 = x \times x) \land (x \leq n)\} \\
\{0 = 0 \times 0\} & \quad (0 \leq n) \quad (0 = 0 \times 0) \land (0 \leq n)
\end{align*}\]

- For (12), \(0 = 0 \times 0\) and \((n \geq 0) \Leftrightarrow (0 \leq n)\)
- Have (13) by Assignment Axiom
- Finishes (10), thus (3), thus (1)