Getting Started with Isabelle

Choice
- Use Isabelle on EWS
- Install on your machine
- Both

On EWS
- Assuming you are running an X client, log in to EWS:
 `ssh -Y <netid>@remlnx.ews.illinois.edu`
 - `-Y` used to forward X packets securely
- To start Isabelle with jedit
 `/class/cs477/bin/isabelle jedit`
- Older versions of Isabelle used emacs and ProofGeneral
- Will assume jedit here

My First Theory File

File name: my_theory.thy
Contents:

```plaintext
theory my_theory
imports Main
begin

thm impI
lemma trivial: "A → A"
apply (rule impI)
apply assumption
done (* of lemma *)

thm trivial

end (* of theory file *)
```

Overview of Isabelle/HOL

- HOL = Higher-Order Logic
- HOL = Types + Lambda Calculus + Logic
- HOL has datatypes, recursive functions, logical operators (`∧`, `∨`, `¬`, `→`, `∀`, `∃`, ...)
- Contains propositional logic, first-order logic
- HOL is very similar to a functional programming language
- Higher-order functions are values, too!
- We'll start with propositional and first order logic

Formulae (first Approximation)

- **Syntax** (in decreasing priority):

  ```plaintext
  form ::= (form) | term = term | ¬form | form ∧ form | form ∨ form | form → form | ∀x. form | ∃x. form
  ```

 and some others

- **Scope** of quantifiers: as far to the right as possible

Examples

- `¬A ∧ B ∨ C ≡ ((¬A) ∧ B) ∨ C`
- `A ∧ B = C ≡ A ∧ (B = C)`
- `∀x. P x ∧ Q x ≡ ∀x. (P x ∧ Q x)`
- `∀x.∃y. P x y ∧ Q x ≡ ∀x.∃y. (P x y ∧ Q x)`
Proofs

General schema:
lemma name: "..."
apply (...) :
done

First theorem statement
(...) are proof methods

Top-down Proofs

sorry

"completes" any proof (by giving up, and accepting it)
Suitable for top-down development of theories:
Assume lemmas first, prove them later.

Only allowed for interactive proof!

Isabelle Syntax

- Distinct from HOL syntax
- Contains HOL syntax within it
- Also the same as HOL - need to not confuse them

Theory = Module

Syntax:
thory MyTh
imports ImpTh1 ... ImpThn
begin
declarations, definitions, theorems, proofs, ...
end

MyTh: name of theory being built. Must live in file MyTh.thy.
ImpThi: name of imported theories. Importing is transitive.

Meta-logic: Basic Constructs

Implication: ⇒ (==>)
For separating premises and conclusion of theorems / rules

Equality: ≡ (==)
For definitions

Universal Quantifier: Λ (!!)
Usually inserted and removed by Isabelle automatically

Do not use inside HOL formulae

Rule/Goal Notation

[| A1; ... ; An |] ⇒ B
abbreviates
A1 ⇒ ... ⇒ An ⇒ B
and means the rule (or potential rule):

\[
\frac{A_1; \ldots ; A_n}{B}
\]

; ≈ "and"

Note: A theorem is a rule; a rule is a theorem.
The Proof/Goal State

1. \(\Lambda x_1 \ldots x_m. [A_1; \ldots; A_n] \Rightarrow B \)

- \(x_1 \ldots x_m \): Local constants (fixed variables)
- \(A_1 \ldots A_m \): Local assumptions
- \(B \): Actual (sub)goal

Proof Basics

- Isabelle uses Natural Deduction proofs
- Uses (modified) sequent encoding
- Rule notation:

\[
\begin{align*}
A_1 & \Rightarrow B \\
A_2 & \Rightarrow B \\
& \vdots \\
A_n & \Rightarrow B
\end{align*}
\]

Natural Deduction

For each logical operator \(\oplus \), have two kinds of rules:

Introduction: How can I prove \(A \oplus B \)?

\[
A \oplus B
\]

Elimination: What can I prove using \(A \oplus B \)?

\[
A \Rightarrow B \\
B \Rightarrow A
\]

Operational Reading

Introduction rule: To prove \(A \) it suffices to prove \(A_1 \ldots A_n \).

Elimination rule: If we know \(A_i \) and we want to prove \(A \)

it suffices to prove \(A_2 \ldots A_n \)

Natural Deduction for Propositional Logic

- \(\land \): \(\text{conjI} \)
- \(\land \): \(\text{conjE} \)
- \(\lor \): \(\text{disjI} \)
- \(\lor \): \(\text{disjE} \)
- \(\Rightarrow \): \(\text{impI} \)
- \(\Rightarrow \): \(\text{impE} \)
- \(\neg \): \(\text{notI} \)
- \(\neg \): \(\text{notE} \)

Natural Deduction for Propositional Logic

- \(\rightarrow \): \(\text{iffI} \)
- \(\rightarrow \): \(\text{iffD} \)
More Rules

\[
\begin{align*}
A \land B & \quad \text{conjunct1} \\
A & \quad \\
B & \quad \\
A \rightarrow B & \quad \text{mp} \\
A & \quad B \\
\end{align*}
\]

Compare to elimination rules:

\[
\begin{align*}
A \land B [A; B] & \Rightarrow C \\
\text{conjE} & \\
A & \Rightarrow B \\
B & \Rightarrow C \\
\text{impE} & \\
C & \\
\end{align*}
\]

“Classical” Rules

\[
\begin{align*}
A & \Rightarrow \text{False} \\
\text{ccontr} & \\
A & \Rightarrow A \\
\text{classical} & \\
\end{align*}
\]

- \text{ccontr} and \text{classical} are not derivable from the Natural Deduction rules.
- They make the logic "classical", i.e. "non-constructive or "non-intuitionistic".

Proof by Assumption

\[
\begin{align*}
A_1 \ldots A_i \ldots A_n & \Rightarrow A_i \\
\text{Proof method: assumption} & \\
\text{Use:} & \\
\text{apply assumption} & \\
\text{Proves:} & \\
[A_1; \ldots; A_n] & \Rightarrow A \\
\end{align*}
\]

by unifying \(A \) with one of the \(A_i \)

Rule Application: The Rough Idea

Applying rule \([A_1; \ldots; A_n] \Rightarrow A\) to subgoal \(C \):

- Unify \(A \) and \(C \)
- Replace \(C \) with \(n \) new subgoals: \(A'_1 \ldots A'_n \)

Backwards reduction, like in Prolog

Example: rule: \([?P; ?Q] \Rightarrow ?P \land ?Q\)

subgoal: 1. \(A \land B \)

Result: 1. \(A_2 \). \(B \)

Rule Application: More Complete Idea

Applying rule \([A_1; \ldots; A_n] \Rightarrow A\) to subgoal \(C \):

- Unify \(A \) and \(C \) with (meta)-substitution \(\sigma \)
- Specialize goal to \(\sigma(C) \)
- Replace \(C \) with \(n \) new subgoals: \(\sigma(A_1) \ldots \sigma(A_n) \)

Note: schematic variables in \(C \) treated as existential variables

Does there exist value for ?X in \(C \) that makes \(C \) true?

(Still not the whole story)

Rule Application

Rule: \([A_1; \ldots; A_n] \Rightarrow A\)

Subgoal: 1. \([B_1; \ldots; B_m] \Rightarrow C \)

Substitution: \(\sigma(A) \equiv \sigma(C) \)

New subgoals: 1. \([\sigma(B_1); \ldots; \sigma(B_m)] \Rightarrow \sigma(A_1) \)

\[\vdots\]

\[n. \ [\sigma(B_1); \ldots; \sigma(B_m)] \Rightarrow \sigma(A_n)\]

Proves: \([\sigma(B_1); \ldots; \sigma(B_m)] \Rightarrow \sigma(C) \)

Command: apply (rule <rulename>)
Applying Elimination Rules

apply (erule <elim-rule>)

Like rule but also
- Unifies first premise of rule with an assumption
- Eliminates that assumption instead of conclusion

Example

Rule: \[
\text{\|} ?P \land ?Q; \text{\|} ?P; ?Q \text{\|} \Rightarrow ?R \text{\|} \Rightarrow ?R
\]

Subgoal: 1. \[
\text{\|} X; A \land B; Y \text{\|} \Rightarrow \text{\|} \]

Unification: ?P \land ?Q \equiv A \land B and ?R \equiv Z

New subgoal: 1. \[
\text{\|} X; Y \text{\|} \Rightarrow \text{\|} A; B \text{\|} \Rightarrow Z
\]

Same as: 1. \[
\text{\|} X; Y; A; B \text{\|} \Rightarrow Z
\]