Continuation Semantics and Program Verification
for the IMPL Language

Micky Abir and José Meseguer
CS Department, University of Illinois at Urbana-Champaign

Abstract

These notes assume a reader already familiar with the basic concepts of
rewriting logic and reachability logic, but not yet familiar with either the
formal semantics of programming language or the deductive verification of
imperative programs. The IMPL programming language, which supports
computation with both numbers and lists, is used as a simple basis through
which the reader can become more easily familiar with these two areas
and gain an initial experience in specifying properties of imperative pro-
grams and verifying then with a proof assistant. Main highlights include:
(i) the IMPL syntax, (ii) the formal semantics of IMPL in a continuation-
based style, (iii) the specification of reachability logic properties of IMPL
programs and its verification with the assistance of the IMPL Prover, ob-
tained as an instantiation of the theory-generic constructor-based reacha-
bility logic Prover, and (iv) a proof methodology to reason about program
properties in a modular way and arrive at effective proof plans before in-
voking the help of the IMPL Prover.

1 Introduction

The main goal of the present notes is to provide a tutorial introduction to pro-
gram verification for programs in an imperative programming language within
the rewriting logic semantic framework [2, 3], using constructor-based reacha-
bility logic [9] and its theory-generic prover as the logic of programs to express
and prove program properties. Therefore, the conceptual approach taken is just
an instance of the general approach in the Rewriting Logic Semantics project
[4, 8, 5], which makes all program verification in a language £ semantics-based,
that is, based on L’s formal semantics as a rewrite theory R,.. One important
advantage of this approach is that program logics and their supporting tools,
including model checkers, theorem provers, and static analysis tools, become
language-generic and can therefore be reused for many languages, as opposed
to the more conventional language-specific approach of crafting a program logic
and its tools for a specific programming language L.

That reachability logic is a very effective language-generic logic of programs
has been amply demonstrated by researchers within the K-approach to program-

ming languages, e.g., [6, 10, 11]. Researchers within the K approach have made
enormously important contributions to the rewriting logic semantics project,
and have brought its ideas in intimate contact with actual software practice.
What the work in [9] on constructor-based reachability logic adds to those pre-
vious contributions in the area of generic logics of programs is to show how a
careful choice of logic primitives that takes into account the algebraic properties
of the given rewrite theory R on which we are reasoning can:

1. Make reachabilty logic not only language-generic, i.e., applicable to any
programming language £, but also rewrite-theory-generic, i.e., applicable
to any rewrite theory R under very general conditions. The point is that
R may in some cases be a theory R, specifying the semantics of a pro-
gramming language £, but in many other cases R may instead formally
specify a distributed system, such as a browser, a network protocol, or a
cloud-based data storage system.

2. Support powerful symbolic reasoning methods in reachability logic theo-
rem proving, thus increasing automation and helping the user focus the
proof effort at a higher level of abstraction.

Within the semantics context just described, what these notes address is an
eminently practical need: how can a practitioner familiar with: (a) the usual
features of imperative programming languages, and (b) the basic concepts of
rewriting logic and of constructor-based reachability logic (which we do not
review in these notes: see [2, 3], and [9] for very detailed introductions), but not
yet familiar with: (c) the formal semantics of programming languages, and (d)
the deductive verification of programs in an imperative language, be helped, so
as to relatively quickly become familiar with both these areas and be able to
verify programs on his/her own.

Since reachability logic properties are expressed in terms of the chosen
rewrite theory R, the first order of business is to make such a practitioner
familiar with how one defines a formal semantics R, for a programming lan-
guage L. We address this need by explaining in detail how a continuation style
formal semantics Rpypr, can be defined for a simple, yet interesting, program-
ming language IMPL supporting both natural numbers and list data structures.
Specifically, we define the syntax of IMPL in Section 2, and its continuation
style semantics Ryypr, in Section 3. With these notions already understood,
and a concrete and not complicated language like IMPL ready to serve as a
testing ground to get introduced to the basic notions of program verification,
everything is in principle ready to start proving properties of programs. But
there is a catch. Even with the best of tools, deductive program verification re-
quieres careful thought to understand in depth the program one is interested in
and its properties. Only after such careful thought is it meaningful to use a the-
orem prover as a proof assistant to verify a program. After explaining the basic
facts about how the theory-generic constructor-based reachability logic theo-
rem prover described in [9] becomes an IMPL Prover when instantiated with
the semantics Rppz, of IMPL in Section 4, we provide in Section 5 a tutorial

on how to arrive at a careful proof plan for verifying a program before invoking
the IMPL Prover. Specifically, we present a compositional proof methodology
that can help a practitioner reason about how to decompose the proof of some
desired reachability properties of a program P —including Hoare Logic proper-
ties [1], since, as we explain, Hoare logic is naturally embedded as a sublogic of
reachability logic. We then illustrate with some concrete IMPL examples how
to effectively apply such a methodology to verify specific programs.

For completeness and ease of reference, we include the equations and rewrite
rules of the IMPL continuation semantics Rjypr, in Appendix A.

2 IMPL Syntax

The IMPL language, which stands for IMP + Lists, is a simple imperative
language with syntax that resembles C, with the addition of a built-in list type.

2.1 Identifiers

Currently, IMPL supports a small set of predefined basic identifiers, as well as
an arbitrary number of composite identifiers built from the basic ones. They
are defined as follows:

Id:=al|blcl|i|lj|k|xz|y]|z]|Id,

We use a small set of basic identifiers for simplicity. However, an arbitrary
number of identifiers can be built from these by means of the comma operator.
For example, =, and x,, are both valid identifiers in IMPL.

2.2 Data

IMPL uses three types of built-in data, which are Bool, Nat, and List. For each
of these three kinds of data we explain below the syntax of their data values. In
the algebraic data type terminology, data values are data expressions built using
only data constructors. Of course, these data values will also have a number of
additional boolean, arithmetic, or list operations. These and their syntax will
be explained later.

The simplest type of data is Bool, which is defined as expected.
Bool ::= true | false

As further explained later, the data values of type Nat are defined using three
constructors 0, 1 and +, where + is an associative-commutative operation with
0 as its identity element. These constructors support the idea of “counting with
one’s fingers,” where 1 is viewed as a single “finger” and 0 as “no fingers.” The
syntax is as follows:

Nat :=0]1|Nat + Nat

Note that, thanks to associativity, parentheses are not required around + expres-
sions, yet this causes no semantic ambiguity. Examples of Nat data expressions
include 0, 1, and 1+ 1+ 1.

As further explained later, the data type List of lists contains Nat as a subtype
and has two constructors, nil and an associative list concatenation constructor
$. Therefore, its syntax is as follows:

List ::=nil | Nat | List $ List

Again, thanks to associativity, parentheses are not required around $ expres-
sions, yet this causes no semantic ambiguity. Examples of List data expressions
include 1, 1+ 1$0$ 1, and nil.

2.3 Expressions

We can divide IMPL expressions into three categories: arithmetic, list, and
boolean expressions. Arithmetic expressions, or AExp, are defined as a sub-
set of standard arithmetic. However, to avoid confusion between the syntax of
IMPL and that of the arithmetic operations in its corresponding algebraic data
type, a colon ‘:’ is added after each arithmetic operator.

AEzp == 1d | Nat | AExp +: AExzp | AExp — AFExzp |AExp . AExp

We can think of AExp as expressions whose evaluation will result in a natural
number.

List expressions, or LExp are defined as follows:

LExp ::= Id| List | LExp $: LExp | first(LExp) | rest(LExp) | last(LEzp) | prior(LExzp)

Since many algorithms for lists require operations for accessing lists and com-
bining lists, we provide the list concatenation operation, $:, first, rest, last,
and prior. Intuitively, first (resp. last) of a list L gives the empty list if L is
empty, or it gives the first (resp. last) element of the list. Similarly, rest (resp.
prior) either returns the empty list if L is empty, or returns L excluding the
first element (resp. the last element).

Boolean expressions, or BExp, allow conjunction and negation of other such
expressions as well as < comparison between arithmetic expressions and an
emptiness test for lists expressions.

BExp ::= Bool | | BExp | AExp <: AExp |AExp <=: AExp
| BExp and BExp | empty(LExp)

Similarly, we can think of BEzp as expressions that evaluate to the booleans
true or false. We can use the negation operation, !, and the and operation,
and, to build any other boolean operations such as or, xor, etc.

Likewise, IMPL provides two arithmetic comparison operations, <: and <=:,
which can be used to build up equality check operations and other comparison
operations.

We currently only support one boolean operation on lists, the empty boolean
predicate, which is sufficient for our present purposes. Other list predicates
could either be added as basic predicates in a language extension, or could be
defined as subroutines within IMPL.

2.4 Statements

Statements are separated into statement concatenation, brackets, variable as-
signment, and control flow.

Stmt = { }
| Stmt Stmt
| { Stmt }
| Id = AFEuxp;
| Id =, LExp;
| while (BExzp) Stmit
| if (BExp) Stmt else Stmt

The empty statement is denoted by two curly brackets, which intuitively can
be thought of as a no-op or “skip.” Statement concatenation does not rely on
a separation character, such as the use of semicolons in C, but is expressed by
empty syntax juxtaposition: Stmt Stmt.

In IMPL, we make a distinction between assignments of arithmetic expressions
and of list expressions. Arithmetic assignment uses the standard equals charac-
ter, whereas a list assignment requires the letter [following the equals character.

We define two types of control flows in IMPL, namely, loops and conditional
branches. For loops, we use the standard while loop syntax, and for branching
we use the conventional if — else syntax.

3 IMPL Continuation Semantics

IMPL is a typed language with variables, implementing both unbounded natural
numbers and lists of natural numbers as types. We describe the semantics of
IMPL as a continuation-style semantics specified as a rewrite theory

Rivprr = (Emvpr, Erver v B, Rivpr)

Choosing a continuation-style semantics for Ry pr, is just one possibility, yet
a practical, efficient, and flexible one. As shown in the paper [8], many other
styles of defining the operational semantics of a programming language such
as, for example, small- and big-step operational semantics, reduction semantics,
MSOS, or CHAM semantics could be chosen, so that Rjypr, would then be the
rewrite theory defining the semantics of IMPL in that chosen style. In that
sense, rewriting logic does not impose any limitation of the choice of different
styles of defining a language’s semantics. The signature X ;yp; specifies the
grammar of IMPL, just as we have specified it in Section 2, as well as extra
operators needed to describe the states of the IMPL computations.

In our chosen continuation semantics style, states of the computation are
pairs < Continuation | Store >, where Continuation represents “the rest of
the program” that remains to be executed, and Store is the current store, map-
ping program variables to their current values. In an initial state of program
execution, the first component will be a continuation of the form P ~ done,
where P is the IMP program P to be executed, and done is the continuation
where nothing remains to be executed, so that execution terminates. The sec-
ond second component of the initial computation state will be the initial store.
However, P ~ done will be immediately transformed, before program execution
begins, into a program continuation, i.e., into a sequence of elementary tasks of
form:

Ty~ Ty~ .. Ty~ Ty ~ done

which are then executed one at a time from left to right by the semantic rules
Riypr,. However, since some of the tasks T; may correspond to the evaluation
of while loops, some tasks may be recursive, so that when a recursive task T;
reaches the top of the continuation, the equations in Fyp; and the rules in
Rjppr may transform such a recursive task 7T; into a similar task after one loop
iteration. As we shall see, the rewrite rules Ryspr, which all have the general
form:

< Continuation | Store > — < Continuation’ | Store’ >

always select the “next program evaluation step” T; at the top of the current
continuation, Continuation, as the task to be executed, whereas the rest of
the continuation in Continuation, that is, T ~ ...T,, ~ T, 1done is what
remains to be executed after task T;. As the result of the application of a
rewrite rule of the above form, we reach a new continuation-store pair of the
form < Continuation’ | Store’ > corresponding to the new state and new list
of pending tasks after the execution of T in C'ontinuation in the current Store.

3.1 From Programs to Continuations

But how is the initial continuation P ~» done transformed into a corresponding
initial list of tasks T7 ~ Tb ~ ...T;,, ~ T, 411 ~ done? This is achieved be
reducing P ~ done to canonical form with the following subset of equations in

Ervpr:

(X = AE;) ~ K = AE~ =(X) ~ K
(X =/ LE;)~ K = LE~ =(X) ~ K

S ~K =S~8~K
{S}~K = S~K
}~K =K

if (B) Selse '~ K = B~ if(5,5") ~ K
while (BE) {S} ~ K — BE ~ if({S while (BE) {S}}, {}) ~ K

AFE1+: AEs ~ K = (AE), AE3) ~ +i~ K
AEy#: AEy ~ K = (AE1, AE3) ~ s~ K
AE\— AEy ~ K = (AE,AEy) ~ —~ K
AFE, <: AEy ~ K = (AE, AE) ~<i~ K
AE; <=: AE;~ K = (AE, AEy) ~v<=r~ K

IBE~ K = BE -~~~ K
BE, and BE; ~ K = BE; ~ and(BE;) ~ K

LE; $: LEy~ K = (LE;,LE;)~ $:~ K
first(LE) ~ K = LE ~ first ~ K
rest(LE)~ K = LE -~ rest~ K
last(LE) ~ K = LE~ last~ K
prior(LE) ~ K = LE ~» prior ~ K
empty(LE) ~ K = LE~ empty ~ K

That is, the initial continuation Ty ~ T5 ~ ... T, ~ T, 1 ~ done is just the
canonical form of P ~ done under the above equations. Note that what is
happening is that the above equations transform program fragments into 0, 1,
or more corresponding tasks in the continuation, which have an internal syntax

different from the program syntax. For example, the equation
if (B) Selse S’ ~ K = B~ if(5,5)~ K

transforms the program-level if-statement if (B) S else S’ into its task represen-
tation B ~» if(5,S’), where now the first task to be executed is the evaluation
of the statement’s boolean expression B. But the task of evaluating boolean
expression B will itself be transformed by some of the above equations into a
sequence of more elementary tasks by the equations in the last three groups of
equations above, which handle, respectively, the transformation into elementary
tasks for future evaluation of arithmetic, boolean, and list program expressions.

3.2 Continuations

As mentioned above, the initial state of a program evaluation will be a pair
< P~ done | InitStore >

where P is the program and InitStore is the initial store. Before any rules in
Rippr, which define the execution semantics of IMPL, are applied, as explained
in Section 3.1, the initial continuation P ~» done is transformed into a sequence
of elementary tasks, which are the canonical form of P ~ done by the subset
of equations of Epypy, described in Section 3.1. With this information, we can
be more precise about the general form of the rewrite rules in Rjypr,. They al
have the form:

< ContTask ~ Continuation | Store > — < Continuation’ | Store’ >

That is, any continuation in canonical form will always be a sequence of tasks,
where ContTask is the first task, at the top of the task sequence, to be executed
by some rule in Rpr-

Therefore, we can define continuations as:

Continuation ::= done | ContTask ~ Continuation

where the different kinds of possible ContTasks are the ones we have already
encountered in the righthand sides of the subset of equations of Ey;py, described
in Section 3.1.

3.3 Stores

The store of an IMPL program specifies the current state of the program’s vari-
ables, together with type information.

A VStore (for Value Store), is defined as a finite map sending each Id to ei-
ther a Nat or a List. The mapping of an identifier = to either a Nat or List

data value v is described as a pair x — v using the maps-to pair constructor
_+— _. A VStore is a finite function, represented set-theoretically as a set of
such pairs built up by means of the associative-commutative union operator
_# _. Therefore, if V Store; and V Stores are two stores with disjoint identifier
domains, then V Store; = V. Stores is the V Store specifying their disjoint union.

For example, the following is a valid state:

z—1lxy— 1+1)818(1+1+1)

Since a V Store can contain both natural and list values, in general it is untyped.
To avoid this problem, we define a new kind of store, T'Store (for Type Store),
that records type information. The structure of a T'Store is analogous to that of
a V Store, except that now an identifier is not mapped to a data value but to a
Type. Here, T Nat represents the type of natural numbers and T List represents
the type of lists. For the previous V Store example, its corresponding T'Store
would look as follows:

xz — TNat « y — TList

Finally, we define the full store Store as a pair T'Store & V Store built up
with the pairing constructor _&_, where T'Store is the type store associated to
V Store. Therefore, our example full store would look as follows:

x —»TNat + y —» TList&ax — 1 x=y — (1+1)$15(1+1+1)

We use mtVE, mtTE, and mt to denote the empty state, empty type store,
and empty full store respectively.

Finally, a state of an IMPL computation will be continuation store, or,
ContStore, which, as already mentioned, is defined as a pair consisting of a
continuation and a store as follows:

ContStore ::= < Continuation | Store >

3.4 Semantic Rules for IMPL

Now that all the components of a continuation store have been explained, we are
ready to present the rewrite rules in Rjspy, describing the elementary steps of
program execution in IMPL. We will also explain a few additional equations in
FErppr not yet presented, which can be better understood in conjunction with
some of the rules in R;j;pr,. We present the most representative rules in Ryypr.
A full specification of the entires sets of equations Eypr, and rules Ry py, can
be found in Appendix A.

3.4.1 Variable Update and Variable Lookup Semantic Rules

We present the rules for update and lookup of variables of type T'Nat. The
corresponding rules for variables of type T List are entirely similar.

<N~=X)~K |(TSt+(X —TNat)) & (VSt* (X —» N')) >
- <K | (TSt (X — TNat)) & (VSt = (X — N)) >
<X~ K | (TSt* (X — TNat)) & (VSt* (X — N)) >
—- < N~K | (TSt (X — TNat)) & (VSt (X — N)) >

3.4.2 Arithmetic, Boolean, and List Data Type Rules

We present and explain below a representative subset of the rewrite rules that
perform elementary operations for natural numbers and for booleans. The corre-
sponding rules for performing elementary operations on lists are entirely similar.
The operation symbols on the righthand sides, like +, * and so on, are performed
in the associated data types for naturals, booleans and lists. They execute the
corresponding program-level operations +:, % and so on.

<(h,h)~+~K|St>—><1+1~ K| St>
<(h,h)~#~K|St>—> < xIy~ K|St>

< true ~!~ K | St > — < false~ K | St >

< false ~!~ K | St > > < true~ K | St >

< true ~ and(BE)~ K | St > > < BE~ K | St >
< false ~ and(BE) ~ K | St > — < false~ K | St >

The key idea in all of these rules is that data values for (some of) the subexpres-
sions below the top operator in a natural or boolean expression have already
been evaluated to their corresponding values, so that now the result of applying
some elementary operation to those values can be computed in the underlying
data type. For example, the 2-tuple (I1,I2) in the first and second rules will
contain the results of having previously evaluated the arithmetic subexpressions
AFE, and AEs in some arithmetic expression, AE,+: AEy (resp. AE1#: AE»).
However, for some other operations, such as boolean conjunction, it may some-
times be unnecessary to evaluate both arguments of an expression to their re-
sulting values: when the first argument of a conjunction expression evaluates to
false, its second argument, i.e., the boolean expression BFE, needs no evaluation.
But if the first argument evaluates to true, BE must be evaluated.

10

3.4.3 Tuple Continuation Equations

Except for boolean conjunction, all other binary operations in expressions follow
the same pattern. Such binary operations take either two natural or two list
argument expressions. Since the approach for natural and list subexpressions
is similar, let us consider the case of an expression of the form AFE, op: AEj,
with AFE,, AF, arithmetic expressions. A continuation of the form AF; op:
AFEy ~ K is transformed by one of the Ejypr equations listed in Section
3.1 into a continuation of the form (AFE;, AEs) ~ op: ~ K. But there is a
mystery that still needs to be clarified. How does the 2-tuple of expressions
(AE1, AE5) get evaluated to their corresponding values (I7,I2) in the current
store? And how is that done following a left-to-right evaluation order? This
is where tuple continuation equations come in. There are three for 2-tuples
of arithmetic expressions, and three completely similar ones for 2-tuples of list
expressions. The three for 2-tuples of arithmetic expressions are:

(AEl, AEQ) ~ K = AEl i (#, AEQ) ~ K
Il’\é(#,AEQ)MK = AEQ’\/)(Il,#)’\/?K
Iy~ (I #) ~ K = (I,)~ K

That is, we first pull out of the 2-tuple its first expression AFE7, put it at the
top of the continuation, and replace its “hole” by the place holder #. This
will usually trigger further application to AE; of the FErypr equations listed
in Section 3.1 (plus the above 2-tuple equations) . After AE; gets eventually
evaluated to its value I; by the semantic rules, then we put I; into the first
component of the tuple, pull AF, to the front, and put the place holder # in
the second component. Finally, when AF, gets eventually evaluated to Is, we
put I into the second component to get the 2-tuple of values (17, I5), to which
the rule in Section 3.4.2 handling the evaluation of op: will apply.

3.4.4 Branching Semantic Rules

The only remaining rules are the ones for branching on a condition, which are
applied after its boolean condition B gets evaluated to either true or false.

< true ~ if(S,5) ~ K | St >>< S~ K | St >
< false ~ if(S,5') ~ K | St >>< S~ K | St >

In summary, in this continuation style, the semantic rules Rjy/py, are extremely
simple: they just perform elementary computation steps. The secret of this

11

simplicity is the way in which the original continuation P ~» done gets trans-
formed by the equations FEjpp; into a sequence of simple elementary tasks.
The only slightly more subtle equation is the recursive one for while loops,
while (BE) {S} ~ K = BE ~ if({S while (BE) {S}}, {}) ~ K, which,
after BE gets evaluated to either true or false, triggers the application of one of
the two branching rules above, may apply again to the first component of the
if({S while (BE) {S}} , {}) pair, and marks the essential difference between
always terminating programs without loops, and a Turing complete language
like IMPL.

3.5 Abstract versus Fine Grained Continuation Semantics

The continuation semantics of IMPL jut specified by the rewrite theory Rypr =
(EIMPLv EIMPL |\ B, RIMPL)» whose equations EIMPL and rules RIMPL are fully
described in Appendix A, makes a distinction between execution steps performed
by the rules Rypr, and syntax manipulation steps performed by the equations
FErppr, which transform the abstract syntax tree of a program P into its contin-
uation representation as a sequence of tasks 77 ~ Tb ~ ... T}, ~ T}, 11 ~ done.
In this sense, the semantics of Rypypr abstracts away the syntactic manipula-
tions of the program P, since all intermediate manipulation steps are equivalent
in the canonical reachability model of Rjypr, to the canonical form T7 ~ Th ~
.. Ty ~ Ty11 ~ done of the original P ~ done. This means that considerably
fewer steps count as computation steps: syntactic manipulations are there but
they become invisible. It is of course possible to make them visible is a more
fine grained continuation semantics. How so? By turning equations into rules.
All equations in Ejypr, are of the form k = k', with k and k' terms of sort
Continuation. So we could just transform them into rules K — k’. However, one
of the highly desirable properties of the rules Rypy is that they are topmost,
i.e., they rewrite the entire state, as a continuation-store pair. Can we achieve
that when transforming the equations Fpypr into rules? Very easily: we just
transform each equation k = k' into the rule < k | St >—>< k' | St’ >. For
example, the equation AF1+: AFy ~ K = (AE;, AE5) ~ +: ~ K becomes
the rule

< AE1+: AE; ~ K | St > > < (AE1, AEy) ~ +:~ K | St >

Let E}MPL denote the set of rules thus obtained. Then, the fine-grained contin-
uation semantics of IMPL is the rewrite theory RY\$p, = (Simpr, B, E}MPL U
Rimpr). Each version has advantages and disadvantages. Ryapr is of course
more abstract, and by having fewer computation steps allows shorter proofs
of reachability properties, since the Step inference rule only uses the rules in
Riypr, and the equations Epppy, allow us to “fast forward” to states with con-
tinuations in canonical form. On the other hand, R¥\$p; is in some ways simpler
and more detailed, and has the useful advantage of allowing a simpler expres-
sion of reachability properties. How so? Because the continuation part in the
precondition of such properties can always be written in the form P ~ done,

12

which is easier to write and undrestad than its associated continuation sequence.
In fact, in what follows and in using the IMPL prover we will use the Maude
specification of Rﬂpr instead than that of Ryypr. As we shall see, at the
expense of having to perform more proof steps, this choice has the advantage of
leading to quite easy to understand reachability formulas.

4 The IMPL Prover

How can we prove properties about IMPL programs with the assistance of a
theorem prover? In usual practice, a different theorem prover must be developed
for each different language. Developing such a prover is typically a several man-
year effort. Furthermore, it is also often an ad-hoc effort. How so? Because
the semantics of the given language is only implicit in the code of the prover,
since such a code is based on the subjective understanding that the prover
implementers have about the programming language. So what? So such an
ad-hoc prover may give wrong answers, and declare a program correct when it
is not so. This is not a hypothetical case, but a real problem in practice.

There is, furthermore, a second related problem. Which logic shall we use
to specify program properties and prove them with a prover’s assistance? The
traditional answer has been to use some flavor of Hoare logic. But there are as
many Hoare logics as programming languages. Such logics can be quite complex
(for example, some Java provers need about 70 Hoare logic inference rules), hard
to get right and prove correct (sometimes this is not even done), and require a
large implementation effort. Furthermore, a user proving Java programs may
need to master 70 quite complex Hoare logic inference rules just to be able to
specify Java program properties.

So, what can be done? A much better approach to proving program proper-
ties could be achieved if we could develop provers and express program proper-
ties in a language-generic manner. That is, the theorem prover in question, call
it TP, would be a language-generic theorem prover. Assuming it is written in
Maude, it would not be a fixed rewrite theory, but a rewrite theory transformer
of the form:

TP :Rp— TP(Rr)

That is, the generic theorem prover T'P, when instantiated with a rewriting logic
semantics R for a programming language £, yields a specific theorem prover
TP(R.) for £ which is directly based on its formal semantics Rz. Of course,
once we get a theorem prover TP(R) for language £, we want to use it to prove
properties about programs in £. But how can we express such properties? In
this language-generic approach to program proving, we obviously need a logic
of programs that, unlike traditional Hoare logic, is itself also language-generic.

Can all this be done? The answer is yes! It has in fact been done several
times as part of the rewriting logic semantics project [4, 8, 5]. First of all, Rogu,
Stefanescu, and other members of the K Team showed that reachability logic can
be used as a language-generic logic of programs applicable to a wide variety of
programming languages [6, 10, 11]. And, more recently, Skeirik, Stefanescu, and

13

Meseguer have developed constructor-based reachability logic [9] as a property
logic that is not only language-generic, but also rewrite-theory-generic. That
is, it can be used to prove properties not only of programs in any programming
language, but also of concurrent systems specified as rewrite theories. So, we
can choose the constructor-based reachability logic prover described in [9] as our
language-generic theorem prover TP : R — TP(R.), and specialize it to the
IMPL language as the prover TP(Rpr). This is exactly the approach taken
in this section.

Since Hoare logic properties can be easily expressed as reachability logic
properties, the logic of our IMPL prover TP(Rmpr) can express any such
Hoare logic properties. We therefore show in what follows how to construct a
Hoare triple for an IMPL program, transform this triple into a reachability logic
goal, and specify and prove this goal in our IMPL prover.

Consider the following IMPL program P, which we will call migrate, that moves
the elements of a list x into the list y, one element per iteration, with initial
value store V..

VSgi=z—» X s y—Y % 22— Z
P := while (lempty(z)) {y =, y $: first(z) ; = =; rest(x) ;}

We can say the value store after the loop, V'S, is
VSi=ax—X s« y—Y % 207
where every variable is of type T'List in the type store T'S.

To express this as a Hoare triple over the rewrite theory Rypr of IMPL, we
first consider its precondition and postcondition. To keep it simple, we will use
the precondition formula ¢q := (Z) = (Y$X), specifying that Y is a sublist of
Z starting at the head, and X is the remaining sublist of Z. We will also use the
postcondition formula ¢ := (Z) = (Y’$X’), which, as we will see later, makes
this relationship our loop invariant, with Z as its data parameter.

In order to express this Hoare triple by pattern predicate formulas describing
IMPL computation states, we replace P by the continuation P ~» done, which
allows REGp; to execute P until completion, denoted by the continuation done.
To put it all together, we have the following Hoare triple:

{<P~done | TS&VSy> |wo} Re {(SKK|TS&VS > |y}

where K is a variable of sort Continuation. Transforming this Hoare triple
into a reachability logic goal is straightforward. The only extra thing we need
to do is to explicitly reflect that —since we are interpreting a Hoare triple
is interpreted only in terminating states, that the corresponding reachability
formula’s midcondition will actually be a postcondition. Since for IMPL any

14

terminating state is a pair whose continuation part is the done continuation, and
whose store part is the store St at the end of program execution, all we need to do
is to explicitly constrain the postcondition in the Hoare triple to only describe a
terminating states, which is easy by just instantiating the continuation variable
K in the Hoare triple’s postcondition to done. In this way, the above Hoare
triple can be expressed as the following reachability logic goal:

<P~ done | TS&VSy > |9 —® <done | TS&VS> |¢p

However, as explained in Section 5.1.3, it is easier to prove this goal by first
generalizing it to the most general setting of beginning with a continuation
P ~ K and ending with a continuation K. That is, we place P in the context
of some further computation K to be done afterwards, with K = done as a
special case. This is called in Section 5.1.3 a Generalize and Conquer method:
proving something more general is often simpler. So we will prove the more
general goal:

<P~ K|TS&VSy> |pg »® <K|TS&VS> |¢

The last thing we must do is to specify this goal in our IMPL prover using
the syntax of the reachability logic prover. We begin by specifying the set of
terminating states from above:

(def-term-set (< done | St:Store >) | true .)

Next, we need to declare the logical variables that we will use, which are A, I,
and X.

(declare-vars (X:List) U (X’:List) U (Y:List) U (Y’:List) U
(Z:List) U (Z’:List) U (K:Continuation) .)

Note that these variables are of type List and not of type T List, since these are
logical variables and not program variables.

To add our reachability claim, we add it as a proof goal with a descriptive
label migrate.

(add-goal migrate :
(< while (! empty(x)) { y =1y $: first(x) ; x =1 rest(x) ; } "> K
| (x |-> TList * y |-> TList * z |-> TList)
E X |>X*xy |->Y*xz |->2Z) >
| (2) = (Y $ %)
=>
(<K | (x |-> TList * y |-> TList * z |-> TList)
E (x |>X *xy |>Y *z [->2Z) >
| (Z) = (Y’ $X°))

Once the proof goal is specified, we are ready to start and carry out the proof,
which we will see how to do in section 5.

15

5 Proof Methodology

Although the IMPL Prover provides an interface allowing us to prove IMPL
programs by giving proof commands, not all such proof commands will be
equally successful. Before giving any proof commands, a deeper understand-
ing of the problem at hand will be invaluable in proving interesting properties.
This deeper understanding can be both developed and aided by following a spe-
cific proof methodology. Such a proof methodology approaches the verification
of a program P in two steps:

1. Proof Design. Given a program P and a desired property of P, viewed
as either a Hoare triple or as a reachability formula (our main goal),
we carefully design a collection of auziliary properties about P or about
fragments of P that we can use as useful lemmas in proving P. In doing
so, we try to reason compositionally. That is, by decomposing a program
into the smaller subprograms it is composed of. In this way, we can
likewise decompose the program proving task into smaller subtasks. The
final result is a proof plan, where the proof of our main goal is decomposed
into simpler proofs of smaller subgoals.

2. Proof Implementation. Once we have designed a proof plan for proving
a given property of our program P, we implement such a plan by giving
commands to the IMPL Prover. Such an implementation may often take
the form of first proving some reachability formulas as auziliary lemmas,
and then using such already proved reachability formulas as azioms in
proving the main goal.

Before considering concrete examples of proofs of IMPL programs, we present
some general proof methods that can guide our proof design for proving prop-
erties of specific programs. After explaining such general proof methods, we
illustrate how to apply them to prove specific properties of concrete IMPL pro-
grams.

5.1 General Proof Methods

Before discussing general methods, let us introduce some useful notation and
explain the notion of pattern subsumption.

5.1.1 Notation

In a fine-grained continuation semantics (see Section 3.5), the patern predicates
appearing in reachability formulas for IMPL programs will have the general
form! < P~ done | st >| ¢ —»®< done | st' >| 1 for a Hoare triple, or, more
generally, < P ~ K | st >| ¢ »®< K | st’ >| 9 for a reachability formula,

I More generally, the midcondition (in specific cases the postcondition) could of course be a
disjunction of pattern predicates. However, in the examples we shall consider all midconditions
will be single pattern predicates. Since this is a common case, we will assume such single-
pattern midconditions in what follows.

16

where st and st’ are specific store patterns describing the shape of the pre- and
mid-stores.

But this is not concrete enough. How do st and st’ typically look like? Let
Z = x1,...,x, denote the set of program variables ever read or written to by
program P. Then st (resp. st’) has typically the form:

st=(TS& T+ X+VS) resp. st' =(TS& T X' *V5S)

where & — X (resp. Z — X') abbreviates the VStore fragment 21 — Xy % ... %
Ty — X, (resp. x1 — X| * ... x x, — X]).

How about the parameters in a reachability formula of the form
<P~ K|TS& T XsVS>|p-®<K|TS&T— X' +VS>|¢

Obviously, the continuation variable K is one of them. Let us assume the
very common case where the remaining parameters, let us call them the data
parameters, are all in fact a subset Y < X of the set X of logical variables X
in the V S pattern & — X. Unless the subset iy € T of program variables where
the logical variables Y are stored are all read-only variables, only some of the
logical variables in ¥ (perhaps none) may also appear in X’. To allow for this
possibility, it may be useful to make explicit the logical variables on which the
constrain formulas ¢ and v may depend, namely, ¢ = QD(X) and 1/1(}7,)2"),
with ¥ < X and ()? ’\}7) ~n X = &. To make explicit and emphasize in the
notation which are the data parameters Y, we may sometimes write ¢(X) in
the redundant form (Y, X).

A second bit of useful notation regards notation for (arithmetic or list or
boolean) expressions in IMPL. The same way that ¢ denotes a X-term or ex-
pression in a given signature ¥ of operators, let ¢:(Z) denote an IMPL expression
mentioning program variables Z. The point of this notation is that, given a V.S
pattern T — X , we can associate to the IMPL expression t:(Z) a correspond-
ing X p-expression t()Z'), where Xp is the signature of the underlying data type
(combining natural, list and boolean operations) where the IMPL expressions
are evaluated according to their continuation semantics. For example, if ¢:(Z) is
the IMPL expression x =: (y-+: x), given the V'S pattern z — X xy — Y, we
obtain the X p-expression X # (Y + X).

5.1.2 Pattern Subsumption

The theory-generic reachability logic prover RLP of which the IMPL Prover is
the instantiation RPL(RESp,) supports the (subsumed Pattern =< Pattern’
command. To prove that the set of states denoted by Pattern is contained in
the set of states denoted by Pattern’. But how is such command executed
by RLP? By a symbolic evaluation method called pattern subsumption. Given
constructor pattern formulas u | ¢ and v | 1, we say that u | ¢ is subsumed by

17

v | 9, denoted u | ¢ E v | ¥, iff (by definition) there exists a substitution «
such that: (i) u =p va, and (ii) Ty puB | @ = (Ya), where (X, E U B) is the
equational theory of the given rewrite theory R where we are reasoning. That
is, the implication ¢ = (¢»a) must be shown to be an inductive theorem in the
initial algebra 75 pop As shown in [9], whenever u | ¢ £ v | ¢ holds, then the
subset inclusion between sets of states [u | ¢] [v | ¥] holds too. In the case of
parametric formulas with set Y of parameter variables, there is also a notion of
parametric pattern subsumption defined as a relation u | ¢ Sy v | 9 that holds
iff (by definition) there exists a substitution a which leaves Y unchanged, i.e., for
each y € Y a(y) = y, and such that: (i) u =p va, and (i) Ty /puB F ¢ = (Ya).
If u | ¢ Ey v | ¥ holds, then for each constructor substitution p € [Y — Tq] we
have a subset inclusion between sets of states [(u | ¢)p] < [(v | ¥)p].

5.1.3 Compositional Proof Methods

Before discussing a number of proof methods that will be useful in proving
reachability properties of IMPL programs, a few words are in order about the
intellectual status of the methods to be discussed. The logic, implementation,
and correctness of the IMPL Prover does not depend on any of the methods dis-
cussed below at all. Remember that the IMPL Prover is just the instantiation
RPL(RYSp.) of the RLP constructor-based reachability prover. Therefore,
since RLP is a rewrite-theory-generic prover, its proof methods know nothing
about IMPL, loops, statements, stores, continuations, or anything like that:
REGL, is just one more rewrite theory. If RPL(REGps;) proves some reachabil-
ity properties about an IMPL program P, no special knowledge about IMPL has
been used. In particular, except for RIGp; itself, no specific knowledge about
the IMPL semantics is ever used in such proofs. So, what is the intellectual
status of the methods to be discussed? As we shall see, the only properties
on which some of the methods, such as those for proving properties of loops,
of conditional statements and of statement compositions, depend are general
theory-generic properties of reachability logic. Other than that, what all meth-
ods we present do is to use language-specific properties of IMPL’s continuation
semantics, as specified in Rﬂpr to guess a good proof plan. Whether such a
proof plan succeeds or not when submitted to the IMPL Prover does not depend
at all on any particular assumptions extraneous to reachability logic, and there-
fore do not affect in any way the wvalidity of the properties that RPL(R¥Sp.)
can prove. However, these methods can be enormously useful in practice. Why?
Because they can help guide the user in guessing and arriving at a proof plan
that will give the RPL(R¥$p;) Prover a reasonably good chance to prove the
program properties in question. In summary, therefore, this section is about
how to guess and find a good proof plan to prove our desired properties about
a given IMPL program P.

Proving Hoare Triples. Now that we have a more detailed notation about
reachability formulas for IMPL, we can be more precise about how a Hoare

18

triple looks like as a reachability formula. It is a formula of the form
<P~sdone | TS & T X VS >| ¢ >®< done | TS & T+ X' % VS >| 1)

which may have data parameters Y. How can we prove it? Easy. Prove instead
the formula

<P~ K|TS&i—XsVS>|p-®<K|TS&T— X' +VS>|¢

which in addition to the data parameters Y has the continuation parameter
variable K. Since, by definition, a valid parametric reachability formula remains
valid after substituting any of its parameter variables by a constructor term, if
we prove the more general formula above, the reachability formula associated to
the original Hoare logic triple is also a trivially valid consequence of it, obtained
by applying the constructor substitution {K — done}. We can call this method
of proving Hoare triples:

Generalize and Conquer

Proving Properties of Assignments. Suppose that we have a pattern for-
mula for the precondition of an assignment statement and we would like to make
a correct guess for the pattern formula of its midcondition. That is, assuming
an assignment with an arithmetic expression (the case for list assignments is
entirely similar) we would like to resolve the guess:

<z = t(x0, B);~ K | TS & o — Xo# T X x VS >| o =@ 77

where the arithmetic expression t:(zg, &) may mention the program variable
(in general it need not do so). What can we do? The following is always a
correct guess:

<zo=t(T);~ K | TS & g — Xg# i X VS >| o
—® < K| TS &g Xpy# T X+ VS >|oa X =t(Xo, X).

Proving Properties of While Loops. Suppose we have a reachability for-
mula that we wish to prove about a while loop, say,

< while b:(%) {stmt} ~ K | TS & &+ XxVS >| ¢ >P< K| TS & & — X'sVS >| ¢

where b:(Z) is the loop’s boolean expression or guard, and the statement stmt is
the loop’s body. Suppose also that, besides the continuation parameter variable
K, Y are the data parameters. Giving such a reachability formula to the IMPL
prover without any forethought may often be quite ineffective. What can we
do? We can consider two ideas. First, it is a basic property of reachability
logic that, by definition, a reachability formula A —@ D about a given rewrite
theory R, parametric on variables Y (indicated by the arrow —@), will always
hold, provided that another formula B —@ C with a more general precondition

19

B and a less general midcondition C, i.e., such that A =y B and C' =y D
is valid in R. This can allow us to shift our ground: to prove A —>§"}> D. In
our case, A —>5®, D will be the original loop reachability property, which can be
abbreviates as:

A[while b:(Z) {stmt} ~ K| -® D[K]

where on both sides we highlight in square brackets the continuation subexpres-
sion parts of the pattern formulas A and D viewed as formula expressions. But
it will be enough to prove the, hopefully easier to prove, formula:

B[while b:(Z) {stmt} ~ K] -® C[K]

But how could this second formula be easier to prove? The key remark is that
loops are a repetitive computation. Therefore, if we could guess a property I
that is preserved by executing the loop, and can therefore be called an invariant
of it, we can then use such a property I to choose B and C to be of the form:

I[while b:() {stmt} ~ K] —® Io[K]

where [0 is a renaming of the logical variables in I. This format for our reach-
ability property will “wear on its sleeve” the repetitive nature of the loop, and
will greatly increase our chances that reachability logic’s Axiom rule, which is
a “seven league boots” rule designed to detect repetitive behavior, will kick in
and will allow us to prove our desired loop property. These two insights are
combined in the notion of a loop invariant, a method based on the following
steps:

1. We guess an invariant I that: (i) will be true when entering the loop, and
(ii) will be preserved by the body subprogram stmt. That is, a formula
I (17, X) such that, under the assumption that the loop’s guard holds (so
that stmt will be executed), would allows us to prove the goal:

—

<stmt~ K |TS & T X+ VS >|I(Y,X) A b(X) = true
SO K |TS&Z— X'« VS > I(Y,X)

Intuitively, I ()7,)?) is a property that holds before stmt is executed (as-
suming b(X) = true), and after stmt is executed, thus the name invariant.
Although some provers have built-in heuristics that can help in guessing
I in some cases, there is in general no free lunch: one has to think about
what stmt is doing to see what properties it preserves. Then, and only
then, can one guess a reasonable invariant. Furthermore, there is no sin-
gle such invariants to be guessed, and the guess may be context-dependent

(more on this below).

2We do not need to actually prove this goal for stmt. It is enough to be sure that it could
be proved. We are just using this knowledge to guess the right invariant for the loop itself.

20

2. Since a terminating execution of the loop (and remember that reachability
logic properties are partial correctness assertions that only care about
terminating executions) will just execute stmt a finite number of times
until b:(Z) becomes false, the invariant I will hold true not only before
entering the loop, but also immediately after exiting it. Furthermore, after
exiting the loop in a state of the form, say, < K | TS & & — X' %«VS >
we know about two properties that such a state will satisfy, namely, (i)
I(Y,X"), and (ii) b(X") = false. Therefore, in Hoare logic approaches it
is common to use the data constrain I(Y,X’) A b(X’) = false in a loop’s
postcondition. It would be natural to use the same data constraint in the
loop’s midcondition in reachability logic. This makes the midcondition
tighter, but is uses a somewhat more complex formula. For simplicity,
in what follows we will use the looser midcondition I(Y, X’), which is
sufficient for proving interesting examples; but all we say can be adapted
to using instead the tighter midcondition. Therefore, a good initial guess
for a property to prove about our loop is:

< while b:(Z) {stmt} ~ K | TS & &— X « VS >| I(Y, X)
—® < K| TS &z — X VS >|I(Y,X)

3. Our initial guess, however, may not be the last and best choice. Why
not? For two reasons: (1) To begin with, the invariant I(Y, X) may be
too general, what is called a weak invariant, so that, even if it is true,
it may be too hard for the IMPL prover to prove it because not strong
enough assumptions can be made to achieve a proof. (2) Furthermore,
remember that the original formula we wanted to prove was:

< while b:(Z) {stmt} ~ K | TS & &— X VS >| ¢
SO K| TS & T X' % VS >| 9

But such original formula and our guess loop invariant may not “fit to-
gether” well. For example, I ()7', X’) may be too general, and therefore may
not allow us to prove that the original midcondition property 1 holds af-
ter executing the loop. The problem is that there is context information
about ¢ and 1 that may not have yet been taken into account when craft-
ing I(Y, X) and we need to account for it. Reasons (1) and (2) all move
us in the same direction. What we should do is to strengthen the invariant
into a stronger version Iy, (Y, X) = I(Y, X) A ¢ which addresses problems
(1) and (2).

4. We can then put everything together as follows. To make sure that the
strengthened invariant I, and our reachability original goal fit together
well, we need to prove the two parametric subsumptions:

< while b(Z) {stmt} ~ K | TS & & — X * VS >| ¢
=, y< while bi(Z) {stmt} ~ K | TS & 7 — X + VS >| Iy, (Y, X)

21

and
<K|TS&T— X'+VS8 >| Ly (Y, X"
Cryp<K|TS&iw X'+VS>|¢

using the (subsumed Pattern =< Pattern’ .) command. If this is the
case, as already mentioned based on general properties of reachability
logic, we have then reduced the proof of our original reachability formula
for the loop to proving the strengthened loop invariant:

- =

< while b(Z) {stmt} ~ K | TS & & — X « VS >| Iy (Y, X)
—® < K| TS &%F— X VS >| Iy (Y, X).

All these ideas are illustrated with a concrete example of an IMPL program
in Section 5.2 below.

Note that this method s directly based on the theory-generic basic property
that if a reachability formula holds for a bigger precondition and smaller post-
condition, then the original formula also holds. Therefore, its correctness does
not depend at all on the particularities of IMPL.

Proving Properties about Conditional Statements. Suppose we want to
prove a reachability formula of the form:

< if (b(Z)) stmt else stmt’ ~ K | TS & T X « VS >| ¢
SO K| TS & T X' % VS >| 9

What can we do? We can remember the Split auxiliary inference rule of Reach-
ability logic [9], that ensures that the validity of a reachability formula of the
form u | ¢ —® B in a rewrite theory R is equivalent to the validity of the two
reachability formulas u | ¢ A1y —® B and u | p Ay —® B, provided ¢; and 1,
do not have any extra variables besides those of u | ¢, and Ty pup | ¥1 v 9o,
where Ts/pop is the initial algebra of R’s underlying equational theory. How
can we apply the Split rule to the above goal? Since the equational theory
(X£p,Ep u Bp) of the combined algebraic data type containing all the arith-
metic, boolean, and list operations needed to evaluate the program expressions
of IMPL is protected as a subtheory of the equational theory (X1apr, ErvpruB)
of Riyvpr, i-e., we have an isomorphism 75, /gmoBlsr = Tsp/EpuBy, and
we also have 75, /5, o8, F b()?) = true v b()z) = false, we can apply the Split
rule of reachability logic to reduce our original goal to the simpler two goals
semantically equivalent to it:

<stmt ~ K|TS&T— X VS >|pnbX)=true
SO K| TS& T X'+ VS >| 9
< stmt' ~ K|TS &7 X VS >|pnbX)= false
B K| TS& T X' % VS >| 9.

22

Note that this method is directly based on the Split rule of reachability logic,
which is theory-generic: its correctness does not depend at all on the particu-
larities of IMPL.

The Chain Rule. The following is a general property of reachability logic that
can also be very useful in proving IMPL programs. Suppose that A —@ B and
B —@ C are two reachability formulas about a given rewrite theory R, both
parametric on variables Y and such that the only variables shared by A and C
are exactly the variables Y (notice that we assume that B is a single-pattern
formula). Then, if we can prove that A —@ B and B —@ C both hold for R,
the reachability formula A —@ C also holds for R.

How can we use the Chain Rule for proving properties of IMPL programs?
We can use it to prove properties about sequential compositions of the form
stmt stmt’. How so? Assume that & are the program variables read and/or
affected by stmt stmt’. We first prove, say,

<stmt~ K' | TS&Z—> X VS >¢p »®<K'|TS& T X'+VS > @y
parametric on K’ and Y and then prove

<stmt' ~ K |TS& T X' VS >py >P< K|TS& T X" VS > @3
parametric on K and Y. Then, thanks to the ChainRule, we have proved:
< stmt stmt’ ~ K | TS & T X5V S > p; >®< K | TS & T X"+VS > 3

parametric on K and Y. How so? Just by first applying to the first formula
the constructor substitution {K’ — stmt’ ~ K}, and then applying the Chain
Rule.

Note that this method is directly based on the Chain Rule of reachability logic,
which is theory-generic: its correctness does not depend at all on the particu-
larities of IMPL.

In summary, this section has presented several compositional methods that can
be quite useful in arriving at a proof plan to prove some desired properties
about an IMPL program P. These methods work by decomposing a program
P into its subprograms, and likewise decomposing the original properties for P
into simpler properties about its subprograms. The key point is that proving
program properties is non-trivial and requires careful thinking. The above proof
methods can serve as a guide to help our thinking. Not to replace it.

5.2 Loop Invariants

To better understand loop invariants, let’s focus on the migrate program defined
in section 4:

P := while (lempty(z)) {y =y $: first(x); z =) rest(x) ;}

23

Again, we will use the initial store V' Sy:

VSpi=2—>X = y—Y x 20> 7
And final store V S:

VSi=x—X s+ y—Y x 227

The loop invariant is a property that holds before and after the loop executes,
and therefore we would like to analyze what changes throughout the loop and
what remains constant. We know that the value of z remains unchanged; there-
fore the logical variable Z should be a parameter of any properties stated about
this program. Instead, the values of and y are updated in each iteration. We
would like to capture the way in which the values of these variables change as
a static property of the loop, i.e., as loop invariant.

While static methods can determine some loop invariants, we don’t consider
this a strong enough approach to prove interesting properties. Similarly, while
tools built upon the semantics of a programming language can be very powerful,
they are still limited when compared to a developer with intimate knowledge of
the program at hand.

If we focus on the body of our loop, we can in fact see that an element is
appended to y in every iteration, whereas x loses an element in each iteration.
We therefore know what changes during each iteration, and we know how it
changes; but we need to know the initial configuration of the program. This is
where we have some creative control. We could assume that y is initialized to
the empty list, and that the values of z and z are the same: a chosen nonempty
list X. We will then define an interesting invariant that hopefully captures
the idea we had in mind when writing this program, which sets y to the list
z and consumes x in the process. Instead, we choose to generalize the initial
configuration according to section 5.1.3 (that is, we consider a precondition that
generalizes and therefore subsumes the one we originally had in mind) and as-
sume that z and y are initialized to arbitrary values X and Y and z to Y$X.

Understanding what changes and how it changes is the first step, but we need to
dive deeper into how and understand the implications of the changes and find our
precondition. In our case, we begin by analyzing the first iteration of the loop.
During this iteration, we take the first element of the list X stored in x, which
we will call Xy, and append it to the end of the list stored in y, so that y now
contains the value Y' = Y$X,. Following this, x is assigned to the rest of X,
meaning that z now has the value X! = X;$X,$...$X,,. After this iteration,
we can see that, in fact, Y$X = Y$X:$X5$...$X,, = Y'$X!. If we follow this
pattern, we can conclude that, after iteration k, we have Y* = YX...$X,
and X* = X1 11$...$X,,, so Y$X = Y*$X*. Since k is arbitrary, we can con-
clude that this relationship holds at any iteration. It is at this point that we
consider z, which is an auxiliary variable we use to represent this relationship.

24

It can represent it because it was initialized to Z = Y$X and, since it is not
mentioned in the loop, its value does not change at all. But, as pointed out
above, we always have Z = Y*$X* for any k. Therefore, our desired loop in-
variant, with data parameter Z, is just the formula I(Z, X,Y) = (Z = Y$X).

Next, let us consider the midcondition of this loop invariant. As discussed
in section 5.1.3, if T (}7, X) is our loop invariant, appearing in the precondition,
with data parameters Y, then the midcondition is I(Y, X’) with X’ the values
of the program wvariables after executing the program. Since in our case the
data parameter is Z and the program variables are x and y, our formula for the
midcondition is I(Z, X', Y') = (Z = Y'$X").

5.2.1 Setting Up the Proof of Migrate

To begin the proof, we must first load the specification of IMPL, and then load
the reachability logic tool that is the basis of our prover.

load impl.maude
load rltool.maude

Next, we select the module containing the semantics of IMPL for execution.
(select IMPL-SEMANTICS .)

We must specify the backend symbolic reasoning tools used by the reachability
logic prover for: (i) contextual rewriting, (ii) variant unification, and (iii) variant
satisfiability. These are needed by the underlying reachability logic prover and
must always be used for proofs in the IMPL prover.

(use tool conrew for validity on IMPL-SYNTAX+MUL

with FOFORMSIMPLIFY-IMP-IMPL .)
(use tool varunif for varunif on FVP-NAT .)
(use tool varsat for unsatisfiability on IMPL-SYNTAX .)

Now all that is left is to specify the set of terminating states, declare the vari-
ables, and add our invariant as a proof goal, as noted in section 4.

(def-term-set (< done | St:Store >) | true .)
(declare-vars (X:List) U (X’:List) U (Y:List) U (Y’:List) U
(Z:List) U (Z’:List) U (K:Continuation) .)
(add-goal migrate :
(< while (! empty(x)) {y =1y $: first(x) ; x =1 rest(x) ; } "> K
| (x |-> TList * y |-> TList * z |-> TList)
E X |I>X*xy |[->Yx*xz |->2Z)>)
| (Z) = (Y $ XD
=>
(<K | (x |-> TList * y |-> TList * z |-> TList)
& (x |-> X xy |[->Y *xz |->2Z) >)
I (Z) = (Y $ X)))

25

Our invariant could have been specified in several ways. We choose invariants
that, after several applications by the prover of the Step and Axiom rules, can
easily reach and match the postcondition, so that the proof can be then finished
with a last application of the Subsumption inference rule. In this way, we can
rely on the prover to automatically close the proof, rather than having to use
manual intervention to complete the proof.

For example, we use the fresh abstract variables X’, Y’, and Z’, rather than
explicitly stating that — nil, or y — X, or z — Z in the postcondition.
This more general way to specify our goal (where relationships between logical
variables are always moved to the data constraint part of the pattern predi-
cate), allows the tool to have more freedom when performing matches to check
needed subsumptions between pattern predicates: for example, when applying
the Axiom or Subsume inference rules of reachability logic. In particular, the
invariant (Z) = (Y$X) in the precondition, and its variable-renamed version
(Z) = (Y'$X’) in the postcondition are both expressed as data constraints in
the data constraint part of the respective pattern predicates; we use different
logical variables for different program variables: X' for x, Y' for y, and Z’ for
z, so that there is a very simple renaming match between the pre- and postcon-
dition of the loop invariant. The objective of the user should be to generalize
and abstract the goals and the way data constraints are expressed in such a
way that the prover can use pattern matching to automatically complete most,
if not all, of the proof.

5.2.2 Proof of Migrate

At this point we are ready to begin our proof. We do so with the start-proof
command.

(start-proof .)

Once the proof is started, the current goal should be displayed as the only
currently active goal. As we perform proof steps, we will notice that the list of
active proof goals changes. We can utilize the auto command to automatically
perform these proof steps, most of which either apply the Step rule, which
amounts to symbolically executing one step in the continuation semantics of the
program?® by applying one of the semantic rules in Rfﬁpb or attempt to close
a proof goal through application of the Axiom and/or Subsumption rules.

(auto .)

In the current version of the prover, it takes 35 calls to auto before a full
iteration of the loop is executed. It is at this point that we can close the proof
using the Axiom inference rule followed by Subsumption. Specifically, since

3Recall that here we are using the fine-grain semantics RE\/CI:PL of IMPL, so “one step”
means either the application of one continuation-transforming equation in Epyp;, viewed as
a semantic rule, or the application of a semantic rule in Rpspr.

26

we started with the loop invariant as our only goal, this is a case of a self axiom
application —i.e., the application of the original goal migrate as an aziom to
one of its children or “descendent” goals— with another call to auto.

(auto .)
To ensure that the proof has been completed, the prover should halt with:

Proof Completed.
Action consumed 1 goals and generated O goals

and should not generate any fatal errors along the way. With this, we have
completed the proof. Alternatively, we could use the command

(auto* .)

to automatically run the proof steps until the prover gets stuck; for this goal,
the prover will not get stuck and can automatically completely the proof.

5.2.3 Full Proof Script for Migrate

load impl.maude
load rltool.maude

(select IMPL-SEMANTICS .)
(use tool conrew for validity on IMPL-SYNTAX+MUL
with FOFORMSIMPLIFY-IMP-IMPL .)
(use tool varunif for varunif on FVP-NAT .)
(use tool varsat for unsatisfiability on IMPL-SYNTAX .)
(def-term-set (< done | St:Store >) | true .)
(declare-vars (X:List) U (X’:List) U (Y:List) U (Y’:List) U
(Z:List) U (Z’:List) U (K:Continuation) .)
(add-goal migrate :
(< while (! empty(x)) { y =1y $: first(x) ; x =1 rest(x) ; } "> K
| (x |-> TList * y |-> TList * z |-> TList)
E X |>X*xy |->Y*xz |->2Z) >
| (2) = ¥ $X
=>
(< K| (x |-> TList * y |-> TList * z |-> TList)
E(x |->X *xy |->Y %z |[->2Z2) >)
| (Z) = (Y> $ X)))
(start-proof .)
(autox .)

5.3 List Reverse

To further understand this methodology, we explore the following program re-
verse, which is slightly more complex program to reverse the contents of a list.

27

In this example, we show how we can add operations to the underlying data
types in order to prove more interesting program properties. This is a good
illustration of the crucial distinction between system specification and property
specification. For IMPL, the system specification is its continuation formal se-
mantics, specified as the rewrite theory Rfﬁp 1., Whereas property specifications
are reachability logic formulas. However, to express some program properties as
reachability formulas, the original system specification Rfﬁp 7, Which contains
the functional module specifying the data types used in IMPL as the initial
algebra of an equational subtheory (Xp, Ep u Bp), while sufficient for simple
programs like migrate, will in general be insufficient: to even formally say what
a program is doing, e.g., reversing a list, or computing the factorial function, we
will need to extend the data type theory (Xp, Epu Bp) with additional function
definitions formally specifying the needed functions at the mathematical level.

We prove a nontrivial property of reverse, which states that this program
actually computes what we had in mind, which here means it reverses a list.
This program is defined as:

P := while (lempty(z)) {y =; first(z) $: y ; = =; rest(z) ;}
with an initial store V'.Sy and final store V' S:

VSpi=2—» X s y—Y % 22— Z
VSi=oz— X' s« y—Y' % 227

We assume that z is a copy of the original list that is not modified.

5.3.1 Finding a Reachability Formula

Finding a reachability formula for this program is a bit trickier. Of course,
one could say empty(X) is the postcondition, or find some other uninteresting
postcondition, but what is our invariant? Unfortunately, a static look at this
program will not yield any interesting preconditions. Fortunately, though, we
can use the semantic rules of IMPL and our understanding of the language to
determine that, in fact, this program reverses the list x and stores it in y.

With that in mind, we know that our invariant should capture the relation-
ship between z, the original list, x, the original list with some elements removed
from the head, and y, the partially reversed list. Since y is a reversed fragment
of z, we conclude that the invariant in question is Z = rev(Y) $ X, where rev
is the list reverse function at the mathematical level.

5.3.2 Extending the IMPL Specification with Additional Functions

IMPL, and therefore the original language of the IMPL Prover, supports a
small, yet rich, set of arithmetic, list and boolean operations. But there is
an infinite set of many other computable functions that programs in IMPL

28

can compute in an imperative fashion: that is the whole point of IMPL as a
Turing-complete language! Of course, the overwhelming majority of all those
computable functions are not expressible as operations or terms in the equa-
tional theory (Xp, Ep u Bp) supporting only the basic operations of IMPL.
But, since Maude functional modules are also a Turing-complete language that
supports the mathematical definition of any computable function on numbers,
lists, booleans, or any other user-definable data type, any computable functions
on numbers or lists that can be programmed in an imperative fashion in IMPL
can be specified in a Maude functional module that protects the functional
module specified by (Xp, Ep u Bp). For the case of our reverse program, we
can define a new Maude module that includes both the Maude specification of
IMPL’s continuation semantics R¥,$p; and the mathematical definition of the
rev function. We can do this in the following way:

First, we load our IMPL definition (containing a functional submodule for
(Xp, Ep v Bp)), so that we can define operations over lists.

load impl.maude

Next, we define a module that protects the theory of IMPL data, which we have
called IMPL-LIST. We define rev as expected, but note that we use the tag
metadata with value 90. This tag is necessary for the underlying prover; should
one add more operations, they must add them with different metadata values,
which should be greater than 90.

fmod REV is
pr IMPL-LIST .

var L : List . var N : Nat
op rev : List -> List [metadata "90"]

eq rev(nil) = nil .
eq rev(N $ L) = rev(L) $ N .
endfm

Lastly, we create two modules, one syntax and one semantics module, which
will be used for contextual rewriting and variant satisfiability as mentioned in
section 5.2.1.

mod REV+IMPL-SYNTAX+MUL is
pr REV .
pr IMPL-SYNTAX+MUL .
endm

mod REV+IMPL-SEMANTICS is
pr REV .
pr IMPL-SEMANTICS .
endm

29

5.3.3 Finding the Loop Invariant for Reverse

With our new function, rev, we can finally craft and reason about an interesting
loop invariant. Again, we must analyze our program and carefully consider what
changes and how it changes.

A quick glance will tell us that, among the three variables z, y, and z, only
two list assignment statements occur, corresponding to =z and y. What are
these assignments doing? Well, x is assigned the rest of its contents in each
iteration; therefore its contents will lose its first element in each iteration. We
can safely conclude that X’ will be a sublist of X when the program terminates.
We are not done yet, though, as we note that our loop will finish executing only
if the contents of = is empty, and with that we can say that, upon termination,
isEmpty(X') is true.

Turning our attention to y, what can we say about its structure? If we consider
a starting configuration where x — X, where X = X1$X5$...$X,,, and where
y — Y, where Y = nil, then this becomes quite clear. After the first iteration
of the loop, we have y — X7, and then y — X5$X; in the next iteration, and
so on. Eventually, of course, we will terminate with Y = rev(X).

Now that we know what changes, we need to focus on how. At some iteration k,
we will have . +— X’ % y— Y’ % z+— Z, where X' = X;,,1$X;,2%...$X,, and
Y = Xp$X,_1$...8Xy, and of course Z = X;$...$X,,. How can we relate
these three variables? If we look at the original X, we can see that it is split
across X’ and Y’. Of course, X’ is a sublist of X, but Y’ is not. Ah, but it is a
sublist of rev(X), and therefore rev(Y”) is a sublist of X, and is clearly disjoint
from X’. We can then say that we always have: X = rev(Y’) $ X', which is
equivalent to stating that Z = rev(Y’) $ X', since we assumed that Z = X.
Since this identity holds for an arbitrary loop iteration k, we have therefore
found our desired loop invariant:

reverse : <P~ K | TS & VSy>|Z =rev(Y)$ X
SO« K |TS&VS>|Z=rev(Y')$ X’

5.3.4 Proving of the Invariant for Reverse

The next section should be familiar from the previous example, with minor
changes to support our new syntax and semantics modules:

load rltool.maude

(select REV+IMP-SEMANTICS .)

(use tool conrew for validity on REV+IMP-SYNTAX+MUL
with FOFORMSIMPLIFY-IMP-IMPL .)

(use tool varunif for varunif on FVP-NAT .)

(use tool varsat for unsatisfiability on IMP-SYNTAX .)

30

(def-term-set (< done | St:Store >) | true .)
(declare-vars (X:List) U (X’:List) U (Y:List) U (Y’:List)
U (Z:List) U (Z’:List) U (K:Continuation) .)

All that is left to set up the proof is to add the goal itself. We can use our newly
defined rev operator to define our reachability formula as expected.

(add-goal reverse :
(< while (! empty(x))
{y =1 first(x) $: y ; x =1 rest(x) ; }
> K
| (x |-> TList * y |-> TList * z |-> TList)
& x |>X*xy [>Y*z |->2) > | (2) = (rev(Y) $ X) =>

| (x |-> TList * y |-> TList * z |-> TList)
& x |>X *xy |=>Y xz |->2°) >
| (Z) = (rev(Y’) $ X°) .)

We can close this goal and all its subgoals with 35 calls auto, and the proof is
complete.

5.3.5 Full Proof of Reverse

load impl.maude

fmod REV is
pr IMPL-LIST .

var L : List . var N : Nat
op rev : List -> List [metadata "90"]

eq rev(nil) = nil .
eq rev(N $ L) = rev(L) $ N .
endfm

mod REV+IMPL-SYNTAX+MUL is
pr REV .
pr IMPL-SYNTAX+MUL .
endm

mod REV+IMPL-SEMANTICS is
pr REV .
pr IMPL-SEMANTICS .
endm

load rltool.maude

31

(select REV+IMP-SEMANTICS .)
(use tool conrew for validity on REV+IMP-SYNTAX+MUL

with FOFORMSIMPLIFY-IMP-IMPL .)
(use tool varunif for varunif on FVP-NAT .)
(use tool varsat for unsatisfiability on IMP-SYNTAX .)
(def-term-set (< done | St:Store >) | true .)
(declare-vars (X:List) U (X’:List) U (Y:List) U (Y’:List)

U (Z:List) U (Z’:List) U (K:Continuation)

(add-goal reverse :

(< while (! empty(x))

{y =1 first(x) $: y ; x =1 rest(x) ; }

“> K
| (x |-> TList * y |-> TList * z |-> TList)
E x[>X*xy [->Y*xz [|->2) > | (2= (rev(Y) $ X) =>
(< K
| (x |-> TList * y |-> TList * z |-> TList)
& x |>X *xy |=>Y xz |[->2°) >

| (Z) = (zrev(Y’) $ X°)

(start-proof .)
(autox* .)

6 Conclusions

We have introduced the IMPL as a simple programming language on which to
explain, by means of easy to follow examples, a number of important concepts in
the specification and deductive verification of properties of imperative programs.
These tutorial notes assume a reader already familiar with basic concepts about
rewriting logic and reachability logic, but not yet familiar with either the formal
semantics of programming languages or the verification of imperative programs.
These notes try to provide a tutorial introduction to both of those topics and
to help the reader get some initial experience verifying properties of programs.
Several possibilities for further reading might be quite natural. For example,
the continuation-based style is a good choice for language definitions, but def-
initely not the only one. Since our prospective reader is already familiar with
rewriting logic and, after reading this tutorial, with continuation style semantic
definitions, the reading of the paper [8], which provides a good overview of the
main alternative styles of defining the operational semantics of a programming
language, and of how all such styles can be naturally expressed in rewriting
logic, would broaden the perspective and provide a fairly comprehensive under-
standing about operational semantics definitions. It would also be worthwhile
to read some papers that can help relate the reachability logic approach in more
detail with Hoare logic. One could begin with Hoare’s seminal paper [1] and

32

)

)

then compare the proof methods of Hoare logic, as described, e.g., in [12], with
those presented here. A short word of warning may be helpful here: in an almost
universal way, the Hoare logic notation is based on a systematic confusion be-
tween program variables and logical variables, i.e., between, a program variable
x and the logical variable X for the value stored in x. This hangs as an albatross
around the neck of Hoare logic formalisms. To appreciate the language-generic
power of reachability logic, as opposed to the language-specific nature of Hoare
logic, it would also be worthwhile to read some of the papers by researchers in
the K framework relating Hoare logic to reachability logic (and the closely re-
lated matching logic), as well as showing the breadth of programming languages
to which this language-generic approach to program proving has already been
applied, e.g., [7, 11]. Finally, for an overview of the Rewriting Logic Semantics
Project, the papers [4, 8, 5] can be consulted.

References

[1] C. A. R. Hoare. An axiomatic basis for computer programming. Commun.
ACM, 12(10):576-580, 1969.

[2] J. Meseguer. Conditional rewriting logic as a unified model of concurrency.
Theoretical Computer Science, 96(1):73-155, 1992.

[3] J. Meseguer. Twenty years of rewriting logic. J. Algebraic and Logic Pro-
grammiang, 81:721-781, 2012.

[4] J. Meseguer and G. Rosu. The rewriting logic semantics project. Theoretical
Computer Science, 373:213-237, 2007.

[5] J. Meseguer and G. Rosu. The rewriting logic semantics project: A progress
report. Inf. Comput., 231:38-69, 2013.

[6] G. Rosu and T. Serbanuta. An overview of the K semantic framework. J.
Log. Algebr. Program., 79(6):397-434, 2010.

[7] G.Rosuand A. Stefanescu. From Hoare logic to matching logic reachability.
In D. Giannakopoulou and D. Méry, editors, FM, volume 7436 of Lecture
Notes in Computer Science, pages 387—402. Springer, 2012.

[8] T. Serbanuta, G. Rosu, and J. Meseguer. A rewriting logic approach to
operational semantics. Inf. Comput., 207(2):305-340, 2009.

[9] S. Skeirik, A. Stefanescu, and J. Meseguer. A constructor-based reachability
logic for rewrite theories. Fundam. Inform., 173(4):315-382, 2020.

[10] A. Stefanescu, Stefan Ciobaca, R. Mereuta, B. M. Moore, T. Serbanuta,
and G. Rosu. All-path reachability logic. In Proc. RTA-TLCA 201/, volume
8560, pages 425-440. Springer LNCS, 2014.

33

[11] A. Stefanescu, D. Park, S. Yuwen, Y. Li, and G. Rosu. Semantics-based
program verifiers for all languages. In Proc. OOPSLA 2016, pages 74-91.
ACM, 2016.

[12] G. Winskel. The Formal Semantics of Programming Languages — An
Introduction. MIT Press, 1994.

A IMPL Continuation Semantics

The full continuation semantics of IMPL is defined below using the following
typed variables:

X : Id
AFE,AFE, AE, : AExp
BE,BFE,, BE, : BFExp
LE,LE,,LE, : LExp
N, N’ : Nat
L, L : List
S, 5 : Stmt
K : Cont

34

A.1 Equations Transforming Programs Into Continuations

(X = AE;) ~ K = AE~ =(X) ~ K
(X = LE;)~ K = LE~ =(X) ~ K

S ~K =S~8~K
{S}~K = S~K
}~K =K

if (B) Selse S’ ~ K = B~ if($9,5)~ K
while (BE) {S} ~ K — BE ~ if({S while (BE) {S}}, {}) ~ K

AFE1+: AEs ~ K = (AE),AE3) ~ +i~ K
AEq#: AEy ~ K = (AE1, AE3) ~ s~ K

AFE\— AEy ~ K = (AE1,AES) ~ —~ K
AFE, <: AEy ~ K = (AE, AE;) ~<i~ K

'BE~ K = BE~!~ K
BE1 and BE2 ~ K = BEl ~ and(BEg) ~ K

LE; $: LE;~ K = (LE;,LE;)~ $:~ K
first(LE) ~ K = LE ~ first ~ K
rest(LE) ~ K = LE~ rest ~ K
last(LE) ~ K = LE ~ last~ K
prior(LE) ~ K = LE ~ prior ~ K
empty(LE) ~ K = LE~ empty ~ K

35

A.2 Tuple Continuation Equations

(AEl,AEQ)’\/)K = AEl’\/? (#,AEQ)MK
I ~ (#,AE) ~ K = AEy~ (I, #) ~ K
Iy~ (I, #) ~ K = (11, 1) ~ K

(LE\,LEy) ~ K = LE;~ (#,LE) ~ K

Ly~ (#,LEy)~ K = LEy~ (Li,#)~ K
Ly~ (Li,#)~ K = (L1,L2) ~ K

A.3 Variable Update and Variable Lookup Semantic Rules

<N~=X)~K |(TSt*(X—TNat)) & (VSt« (X — N')) >
- <K | (TSt (X »—>TNat))&(VSt*(X»—>N))>
<L~ =(X)~ K |(TSt+(X — TList)) & (VSt* (X — L)) >
- <K | (TSt (X — TList)) & (VSt+ (X — L)) >
<X~ K | (TSt (X — TNat)) & (VSt* (X — N)) >
—-<N~K | (TSt+ (X — TNat)) & (VSt* (X — N)) >
<X~ K | (TSt (X — TList)) & (VSt+ (X — L)) >
> <L~K | (TSt (X — TList)) & (VSt* (X — L)) >

36

A.4 Arithmetic, Boolean, and List Data Type Rules

L,L)~+~K|St>—><1+ 1~ K| St>
I, L)~ s~ K| St>—><Iixlp~ K| St>
L, L)~ —~K|St>—-><I; -~ K|St>
L,L)~<i~K|St>—><i<Ilh~ K| St>

AN AN ANA

~—~ o~ —~

<true~!~ K| St > — < false~ K | St >

< false ~!~ K | St > - < true~ K | St >

< true ~ and(BE)~ K | St > > < BE~ K | St >
< false ~ and(BE) ~ K | St > — < false~ K | St >

<(L1,La)~%~K|St>—><L;$Ly~ K| St>
<L~ first~ K | St > - < head(L) ~ K | St >

< L~ rest~ K| St>— <tail(L)~ K | St >

< L~last ~ K | St > — < final(L) ~ K | St >

< L~ prior ~ K | St > — < prefix(L) ~ K | St >
< nil ~ empty ~ K | St > > < true~ K | St >
<NS$ L~ empty ~ K |St>— < false~ K| St >
<(L1,Lo)~8$:~ K |St>—><L;$ Lo~ K|St>

A.5 Branching Semantic Rules

< true ~ if(S,8") ~ K | St >>< S~ K | St >
< false ~ if(S,8") ~ K | St >—>< §' ~ K | St >

37

