José Meseguer

Computer Science Department
University of Illinois at Urbana-Champaign

Model Checking Invariants through Search

Suppose that we have specified a rewrite theory R in Maude as a
system module, and that, for £ a chosen kind of states with, say,
init the chosen initial state, R contains also a Boolean predicate I

that we want to check it is an invariant, that is,
Tr,init = OI

How can we do this in an automatic way? The key observaton is
that I holds if and only if the search command

search init =>* x:k such that I(x:k) =/= true .

has no solutions. Indeed, having no solutions exactly means that on
init, and on all states reachable from it, the predicate I evaluates

to true, that is, that I is an invariant.

[Model Checking Invariants through Search (II)]

Consider a simple clock that marks the hours of the day. Such a
clock can be specified with the system module

mod CLOCK is
protecting INT .
sort Clock .
op clock : Int -> Clock [ctor] .
var T : Int .
rl clock(T) => clock((T + 1) rem 24) .

endm

Let clock(0) be the initial state. Note that, in principle, the clock
could be in an infinite number of states, such as clock(7633157)
or clock(-33457129). The point, however, is that if the initial
state is clock(0), then only states clock(T) with times T such
that 0 <= T < 24 can be reached.

[Model Checking Invariants through Search (III)]

This suggests making the predicate 0 <= T < 24 an invariant of
our clock system.

Since using simple linear arithmetic reasoning we can express the
negation of such an invariant as the predicate

(T < 0) or (T >= 24), we can automatically verify that our
simple clock satisfies the invariant by giving the command:

Maude> search in CLOCK : clock(0) =>*% clock(T)
such that T < O or T >= 24 = true .

No solution.

states: 24 rewrites: 216 in Oms cpu (2ms real) (~ rews/sec)

Model Checking Invariants through Search (IV)

We call this process of automatically checking an invariant through
search model checking, since we are cheching if our model, namely
the initial model T together with a chosen initial state satisfies a

given invariant I.

If, as in the clock example, the number of states reachable from the
initial state is finite, then search provides a decision procedure for
the satisfaction of invariants: in finite time Maude will either find
no solutions to a search for states violating the invariant, or will
find an invariant-violating state together with a sequence of
rewrites from the initial state to it, that is, a counterexample.

Model Checking Invariants through Search (V)

But what if the number of states reachable from the initial state is
infinite? In such a case, if the invariant I is violated, the search
command will terminate in finite time yielding a counterexample.
Assuming that the rules in R have no rewrites in their conditions,
termination is guaranteed by the breadth-first nature of the search.

A state violating the invariant is a reachable state: there is a finite
sequence of rewrites from the initial state to it. Since there is a
finite number of rules R, and therefore a finite number of ways that
each state can be rewritten, even though the number of reachable
states is infinite, the number of states reachable from the initial
state by a sequence of rewites of length less than a given bound is
finite.

[Model Checking Invariants through Search (VI)]

This bounded subset is always explored in finite time by the
search command. This means that, for systems where the set of
reachable states is infinite, search becomes a semi-decision
procedure for detecting the violation of an invariant. That is, if the
invariant is violated, we are guaranteed to get a counterexample;

but, if it is not violated, we will search forever, never finding it.

We can illustrate the semi-decision procedure nature of search for
the verification of invariant failures with a simple infinite-state
example of processes and resources. Processes and resources have
no identities or topology; also, the number of processes and

resources can grow dynamically in an unbounded manner.

Model Checking Invariants through Search (VII)]

mod PROCS-RESOURCES is
sorts State Resources Process
subsort Process < State
subsort Resources < State
ops res null : -> Resources [ctor]
op p : Resources -> Process [ctor]
op __ : Resources Resources -> Resources
[ctor assoc comm id: null]
op __ : State State —-> State [ctor dittol

rl [acql]l : p(null) res => p(res)

rl [acq2] : p(res) res => p(res res)

rl [rel] : p(res res) => p(null) res res .

rl [dupl] : p(null) res => p(null) res p(null) res

endm

Model Checking Invariants through Search (VIII)

The state is a soup (multiset) of processes and resources. Each
process needs to acquire two resources. Originally, each process p
contains the null state. But if a resource res is available, it can
acquire it (rule [acql]). If a second resource becomes available, it
can also acquire it (rule [acq2]).

After acquiring both resources and using them, the process can
release them (rule [rell).

Furthermore, the number of processes and resources can grow in an
unbounded manner by the duplication of each process-resource pair
(rule [dupll]).

[Model Checking Invariants through Search (IX)]

One invariant we might like to verify about this system is deadlock
freedom from an initial state res p(null). There are two ways to
model check this property: one completely straightforward, and

another requiring some extra work. The straightforward manner is

to give the search command

Maude> search in PROCS-RESOURCES : res p(null) =>! X:State .

Solution 1 (state 1)
states: 3 rewrites: 2 in Oms cpu (Oms real) (~ rews/sec)
X:State --> p(res)

Solution 2 (state 5)

states: 9 rewrites: 9 in Oms cpu (ims real) (~ rews/sec)
X:State --> p(res) p(res)

10

Solution 3 (state 13)
states: 19 rewrites: 26 in Oms cpu (3ms real) (~ rews/sec)
X:State —-> p(res) p(res) p(res)

Solution 4 (state 25)
states: 34 rewrites: 56 in Oms cpu (4ms real) (~ rews/sec)
X:State —-> p(res) p(res) p(res) p(res)

Solution 5 (state 43)
states: 55 rewrites: 104 in Oms cpu (23ms real) (~ rews/sec)
X:State ——> p(res) p(res) p(res) p(res) p(res)

Solution 20 (state 1649)
states: 1770 rewrites: 5640 in 20ms cpu (67ms real)
(282000 rews/sec)
X:State ——> p(res) p(res) p(res) p(res) p(res) p(res) p(res) p(res)
p(res) p(res) p(res) p(res) p(res) p(res) p(res) p(res)
p(res) p(res) p(res) p(res)

11

[Model Checking Invariants through Search (X)]

Maude will indeed continue printing all the solutions it finds. But
since there is an infinite number of deadlock states, it may be
preferable to specify in advance a bound on the number of
solutions, giving, for example, a command like the following, that

looks for at most 5 solutions.

Maude> search [5] in PROCS-RESOURCES : res p(null) =>! X:State .

The nice thing about model checking deadlock freedom this way is
that there is no need to explicitly specify the invariant as a Boolean
predicate. This is because the negation of the invariant is by
definition the set of deadlock states, which is what the search

command with the =>! qualification precisely looks for.

12

Model Checking Invariants through Search (XI)

But, if one wishes, one can with a little more work perform an
equivalent model checking of the same property by using an explicit
enabledness predicate. Of course, this cannot be done in the
original module, because such a predicate has not been defined, but
this is easy enough to do:

mod PROCS-RESOURCES-ENABLED is
protecting PROCS-RESOURCES .
op enabled : State -> Bool .
eq enabled(p(null) res X:State) = true .
eq enabled(p(res) res X:State) = true .
eq enabled(p(res res) X:State) = true .
eq enabled(X:State) = false [owisel]

endm

13

[Model Checking Invariants through Search (XII)]

One can then give the command

Maude> search [5] in PROCS-RESOURCES-ENABLED : res p(null)
=>% X:State such that enabled(X:State) =/= true .

getting the following 5 solutions:

Solution 1 (state 1)
states: 2 rewrites: 4 in Oms cpu (Oms real) (~ rews/sec)
X:State --> p(res)

Solution 2 (state 5)
states: 6 rewrites: 15 in Oms cpu (Oms real) (~ rews/sec)
X:State --> p(res) p(res)

Solution 3 (state 13)

states: 14 rewrites: 41 in Oms cpu (Oms real) (~ rews/sec)

X:State —--> p(res) p(res) p(res)

Solution 4 (state 25)
states: 26 rewrites: 87 in Oms cpu (1ms real) (~ rews/sec)

X:State —-> p(res) p(res) p(res) p(res)

Solution 5 (state 43)
states: 44 rewrites: 160 in Oms cpu (1ms real) (~ rews/sec)

X:State --> p(res) p(res) p(res) p(res) p(res)

15

A Cryptographic Protocol Example

We can illustrate the power of this model checking technique for

invariants of infinite state systems by showing how it can be used
to find subtle attacks for cryptographic protocols, including some
that have been used extensively and have been considered secure
for a long time.

One such protocol is the 1978 Needham-Schroeder authentication
protocol (NSPK) for which a subtle “man-in-the-middle” attack
was found by G. Lowe in 1996 using model checking.

The goal of the NSPK Protocol is to provide authentication of two
agents who want to be assured of each other’s identity before they
exchange safety-critical data.

16

A Cryptographic Protocol Example (II)

That is, an intruder should not be allowed to impersonate another
agent. For this purpose, initiator and responder of a

communication mutually authenticate each other.

NSPK uses public key cryptography, i.e., each agent has a public
key which can be accessed by all agents, and a secret key which is

the inverse of the public key.

Moreover, nonces are used in the protocol. Nonces are freshly
generated, unguessable random numbers to be used in a single run

of the protocol.

17

A Cryptographic Protocol Example (IIT)

Here is a textbook-style simplified description of NSPK:

Message 1 A— B:ABAN. A} pr(B)
Message 2 B — A:B.A{N,Ny}pKa
Message 3 A — B: ABA{Nvy}pr(B)

This level of description is ambiguous, in that a fair amount of
implicit assumptions are left unspecified. An object-oriented
rewriting logic specification of the protocol (developed in joint work
with G. Denker and C. Talcott) makes these assumptions explicit,

and allows model checking.

18

Maude Specification of NSPK

We first specify key algebraic properties of the cryptographic

infrastructure in a functional module.

fmod DATATYPES is
sorts Key Field Nonce Principal Run Role EstabComm .
subsort Nonce Principal Key < Field .
op keypair : Key Key -> Bool [comm]
op ped : Key Field -> Field . *** encryption function
op n : Principal Nat -> Nonce .
ceq ped(sk,ped(pk,f)) = f if keypair(sk,pk)

endfm

The protocol itself, as well as the actions of an attacker, are

specified as follows (fragment):

19

[Maude Specification of NSPK (II)]

class Agent | e_com: EstabCom, sec_key: Key, role_i: Run, role_r: Run,
d_com: FieldSet cnt: Nat

msg from_to_send_ : Principal Principal Field -> Message

vars A B P : Principal . vars RI RR : Run . vars NI : Nonce .
rl [BeginRun]
< A : Agent | role_i: RI, d_com: B U S, cnt: J >
=> < A : Agent | role_i: RI U (n(A,J),B,mtfield), d_com: S, cnt: J + 1 >
from(A)to(B)send(ped(pk(B) ,n(A,J),A))

crl [MessagelRec]
< B : Agent | sec_key: SKB, role_i: RI, role_r: RR, cnt: J >
from(A)to(B)send(ped(PKB,F,A))
=> < B : Agent | role_r: RR U (n(B,J),A,F), cnt: J + 1 >
from(B)to(A)send(ped(pk(A),F.n(B,J)))
if keypair(SKB,PKB) and not(F in RR)

20

| Maude Specification of NSPK (ITI) |

crl [Message2RecCorrectl]
< A : Agent | sec_key: SKA, role_i: RI U (NI,P,mtfield), e_com: C >
from(B)to(A)send(ped(PKA,F))
=> < A : Agent | role_i: RI, ECom: C U (i,NI,B,rest(F)) >
from(A)to(B)send(ped(pk(B) ,rest(F)))
if keypair(SKA,PKA) and (B == P) and (NI == first(F))

crl [Message2RecIncorrect]
< A : Agent | sec_key: SKA, role_i: RI U (NI,P,mtfield) >
from(B)to(A)send(ped(PKA,F))
=> < A : Agent | role_i: RI >
if keypair(SKA, PKA) and (NI == first(F)) and (B =/= P)

21

class Intruder | e_com: EstabCom sec_key: Key ncs: FieldSet,
msgs: FieldSet agents: FieldSet role_i: Run,

role_r: Run d_com: Field cnt: Nat.

crl [IntruderFakeMessagel
< I : Intruder | ncs: N U F, agents: SUAUB >
=> < I : Intruder | ncs: N U F > from(A)to(B)send(ped(pk(B),F))
if B =/=1

similar: IntruderInterceptMessage, IntruderOverhearMessage,
IntruderReplayMessage

22

The State Predicate of an Attack

In a topmost version of the specification, the situation where
authentication information has been compromised is specified by
the following state predicate:

op attack? : Configuration -> Prop .

ceq attack?(boundary(
< INTR : Intruder | ecom : EC, rolei : RI, roler : RR,
ncs : fset+(fset+(FSET1, N1), N2) >
< A : NSPKAgent | ecom : ecom+(EC2, ecom(ROLE,N1,B,N2)) >
Conf)) = true
if (not(inEstabCom(ecom(r,N2,A,N1),EC))
and not(inEstabCom(ecom(i,N2,A,N1), EC))
and not(in(N1,RI)) and not(in(N1,RR))
and not(in(N2,RI)) and not(in(N2,RR))
and B =/= INTR) == true .

23

Finding an Attack

The relevant invariant is that no such attack is possible under
reasonable initial conditions. For example, we can consider a simple
scenario with two agents and an attacker given by an initial state
cf2AgentslIntruder equationally defined in the obvious manner.
Then the desired invariant safety property for R the rewrite theory
specifying the protocol is:

Tr,cf2AgentslIntruder = Of

where, by definition, I(S) = —(attack?(S) = true).

Maude’s search command finds Lowe’s countarexample to such a

property:

24

Finding an Attack (I)

Maude> search [1] cf2AgentslIntruder =>+ C:Configuration s.t.
attack?(C:Configuration) = true
search [1] in NSPK : cf2AgentsliIntruder =>+ C:Configuration such that
attack?(C:Configuration) = true
Solution 1 (state 37826)
states: 37827 in 25350ms cpu (44300ms real)
C:Configuration -->
boundary(< alice : NSPKAgent | cnt : 2,dcom : mtfset,roler
: mtrun,rolei : mtrun,seckey : skalice,ecom : ecom(i, n(alice, 1), mrx, n(
bob, 1)) > < bob : NSPKAgent | cnt : 2,dcom : mtfield,roler : mtrun,rolei
mtrun,seckey : skbob,ecom : ecom(r, n(bob, 1), alice, n(alice, 1)) > < mrx
Intruder | cnt : 1,dcom : mtfield,roler : mtrun,rolei : mtrun,seckey :
skmrx,ecom : mtecom,agents : fset+(alice, bob, mrx),ncs : fset+(mtfset, n(
alice, 1), n(bob, 1)),msgs : fset+(mtfset, ped(pkalice, cat(n(alice, 1), n(
bob, 1)))) >)

25

Finding an Attack (III)

We can find the actual sequence of rewrites leading to the
“man-in-the-middle” attack by giving to Maude the command show
path 37826 . A detailed trace is then shown, corresponding to the

sequence of rewrite rule applications:

[BeginRun] ; [IntruderAcceptEveryMessagell] ; [IntruderFakeMessagel] ;
[MessagelRec] ; [IntruderInterceptMessage2] ; [IntruderReplayMessage] ;
[Message2Rec] ; [IntruderAcceptEveryMessage3] ;

[IntruderFakeMessage3] ; [Message3Rec]

26

Bounded Model Checking of Invariants

Although search can be a quite effective model checking technique

for invariants, it has some limitations:

e if the set of reachable states is infinite and the invariant is

satisfied, the search process never terminates;

e even if the number of reachable states is finite, it may be too
large to be explored in reasonable time and space, due to time

and memory limitations.

In such cases we have several alternatives. The most obvious is to
give up on completeness and settle for searching states only up to a
bound on the depth of paths reaching them. Another alternative is
to use an abstraction; or we may reason deductively (more on this

in future lectures).

27

Bounded Model Checking of Invariants (II)

Bounded model checking is an appealing and widely used formal
analysis method. It cannot guarantee that an invariant holds
everywhere, but it can either: (i) find very useful and subtle
counterexamples; or (ii) guarantee that up to a certain depth the
invariant holds.

Bounded model checking of invariants is supported in Maude by

means of the bounded search command.

Consider the following specification of a readers-writers system.

28

[Bounded Model Checking of Invariants (III)]

mod READERS-WRITERS is
protecting NAT .

sort Config .

op

<_,_> : Nat

vars R W : Nat

rl
rl
rl
rl

endm

<0, 0> =>
<R, s(W) >
<R, 0> =>
< s(R), W>

Nat -> Config [ctor]

< 0, s(0) > .
=> <R, W>.
< s(R), 0> .
=> <R, W>.

—-——- readers/writers

A state is represented by a tuple < R, W > indicating the number R

of readers and the number W of writers accessing a critical resource.

Readers and writers can leave the resource at any time, but writers

can only gain access to it if nobody else is using it, and readers

only if there are no writers.

29

[Bounded Model Checking of Invariants (IV)]

Taking < 0, 0 > as the initial state, we would like to verify two

important invariants, namely:

e mutual exclusion: readers and writers never access the resource
simultaneously: only readers or only writers can do so at any

given time.

e one writer: at most one writer will be able to access the

resource at any given time.

We can try to model check these two invariants. In this example
the invariants themselves can be expressed in two different ways:
(i) implicitly, by giving a pattern characterizing their negation; or

(ii) explicitly by defining appropriate state predicates.

30

[Bounded Model Checking of Invariants (V)]

The implicit method is the easiest:
Maude> search < 0,0 > =>x < s(N:Nat), s(M:Nat) > .

Maude> search < 0,0 > =>% < N:Nat, s(s(M:Nat)) > .

In this case the state predicates corresponding to the negation of
each of the two invariants do not need to be given explicitly as
Boolean conditions: they can instead be described more simply by
the patterns we are searching for. The negation of the first
invariant corresponds to the simultaneous presence of readers and
writers, which is exactly captured by the pattern

< s(N:Nat), s(M:Nat) >; whereas the negation of the fact that
zero or at most one writer should be present at any given time is
exactly captured by the pattern < N:Nat, s(s(M:Nat)) >.

31

[Bounded Model Checking of Invariants (V)]

Since the number or readers is unbounded, the set of reachable
states is infinite and the search commands never terminate. We can
instead perform bounded model checking of these two invariants by

giving a depth bound, for example 10°, with the commands:

Maude> search [1, 1000000] in READERS-WRITERS :
< 0,0 > =>% < s(N:Nat), s(M:Nat) > .
No solution.
states: 1000002 rewrites: 2000001 in 36480ms cpu (50317ms real)
(54824 rews/sec)

Maude> search [1, 1000000] in READERS-WRITERS :
< 0,0 > =>% < N:Nat, s(s(M:Nat)) > .
No solution.
states: 1000002 rewrites: 2000001 in 38910ms cpu (41650ms real)
(51400 rews/sec)

32

Bounded Model Checking of Invariants (VI)]

The second method is to explicitly define our invariants by means
of state predicates. This is also easy to do:

mod R&W-PREDS is
protecting R&W .
ops mutex one-writer : Config -> Bool .
eq mutex(< s(N:Nat),s(M:Nat) >) = false .
eq mutex(< O,N:Nat >) = true .
eq mutex(< N:Nat,0 >) = true .
eq one-writer(< N:Nat,s(s(M:Nat)) >) = false .
eq one-writer(< N:Nat,0 >) = true .
eq one-writer(< N:Nat,s(0) >) = true
endm

33

[Bounded Model Checking of Invariants (VII)]

search [1, 1000000] in R&W-PREDS : < 0,0 > =>x C:Config such that

mutex(C:Config) = false .

No solution.
states: 1000002 rewrites: 3000003 in 46700ms cpu (101775ms real)
(64239 rewrites/second)

search [1, 1000000] in R&W-PREDS : < 0,0 > =>* C:Config such that

one-writer(C:Config) = false .

No solution.
states: 1000002 rewrites: 3000003 in 49190ms cpu (109273ms real)

(60988 rewrites/second)

34

