
Program Verification: Lecture 16

José Meseguer

Computer Science Department
University of Illinois at Urbana-Champaign

1

Reachability Models

The models of equational theories are algebras. What are the
models of rewrite theories? There are several answers to this
question. The simplest answer, which we shall use in this course, is
that they are reachability models.

By definition, given a pair (Σ, ϕ), with Σ an order-sorted signature
and ϕ a function specifying frozen information for Σ, then a
(Σ, ϕ)-reachability model is a pair A→ = (A,→A) where:

• A = (A,_A) is a Σ-algebra, and

• →A= {→A,k}k∈K a K-indexed family of binary relations, with
→A,k⊆ A2

k such that:

2

Reachability Models (II)

1. Reflexivity and Transitivity: for each k ∈ K the relation →A,k

is reflexive and transitive;

2. Congruence: for each f : k1 . . . kn −→ k in Σ such that
{1, . . . , n} − ϕ(f) = {i1, . . . , im} ̸= ∅, whenever we have
a1 ∈ Ak1

, . . . , an ∈ Akn
and for 1 ≤ j ≤ m we have

aij →Akij
a′ij then we also have,

fA(a1, . . . , ai1 , . . . , aim , . . . , an) →A,k fA(a1, . . . , a
′
i1
, . . . , a′im , . . . , an)

Intuitively, A specifies the states plus functions between them, and
→A specifies the reflexive-transitive closure of the transitions
between states, which are concurrent because of Congruence.
Therefore, A specifies the statics, and →A the dynamics of a
concurrent system.

3

Satisfaction

By definition, a (Σ, ϕ)-reachability model A→ = (A,→A) satisfies a
rewrite theory R = (Σ, E, ϕ,R), written A→ |= R, if an only if it
satisfies each equation e ∈ E and each rule in r ∈ R, written
A→ |= e, and A→ |= r, which means:

• A |= E, and

• for each rewrite rule in R,

l : (∀X) t −→ t′ ⇐ (
∧
i

ui = u′
i) ∧ (

∧
j

wj −→ w′
j)

with, say t, t′ of kind k, and wl, w
′
l of kind kl, and for each

assignment a : X −→ A such that: (i)
∧

i uia = u′
ia, and (ii)∧

j wja →A,kl
w′

ja, we have,

ta →A,k t′a.

4

Soundness and Completeness of Rewriting Logic

The following theorem can be easily proved by induction of the
depth of a rewriting logic proof and is left as an exercise:

Theorem (Soundness). For each rewrite theory R = (Σ, E, ϕ,R)

and (Σ, ϕ)-reachability model A→ = (A,→A) such that A→ |= R
we have:

R ⊢ (∀X) t −→ t′ ⇒ A→ |= (∀X) t −→ t′.

Rewriting logic is also complete (Bruni and Meseguer, Theoretical
Computer Science, 360, 386-414, 2006), that is, we have:

R |= (∀X) t −→ t′ ⇒ R ⊢ (∀X) t −→ t′.

5

Reachabilty Homomorphisms

Given two (Σ, ϕ)-reachability models A→ = (A,→A), and
B→ = (B,→B), a (Σ, ϕ)-reachability homomorphism
h : A→ −→ B→ is a Σ-homomorphism h : A −→ B such that
“preserves reachability,” that is, for each k ∈ K, a →A,k a′ implies
hk(a) →B,k hk(a

′).

Intuitively, we can think of h as an algebraic (because it preserves
the algebraic structure) (stuttering) simulation, because, via h, B→

can mimic or simulate any move that A→ can make. The
“stuttering” qualification indicates the fact that an atomic
transition in A→ may be simulated by a sequence of zero, one, or
more atomic transitions in B→.

6

The Initial Model TR

The most obvious reachabilty model for a rewrite theory
R = (Σ, E, ϕ,R) is the model TR = (TΣ/E ,→R), where, by
definition,

[t] →R [t′] ⇔ R ⊢ t −→ t′

This is indeed a reachability model, and TR |= R, because
(exercise) all the requirements are guaranteed by TΣ/E being a
(Σ, E)-algebra and by the inference rules of rewriting logic.

Using the Soundness Theorem and the initiality theorem for
order-sorted equational logic it is then nontrivial but relatively easy
to prove (exercise) that we have:

7

The Initial Model TR (II)

Theorem. (Initiality Theorem). Assuming that Σ is sensible, TR is
initial in the class of reachability models that satisfy R. That is, if
A→ |= R, then there is a unique (Σ, ϕ)-reachability homomorphism

_ R
A→

: TR −→ A→

Therefore, when reasoning about a concurrent system specified by a
rewrite theory R, for example as a system module in Maude, we
will view TR as the standard model specified by R, that is, as the
mathematical model denoted by the specification R. In other
words, the initial algebra semantics of equational logic generalizes
in a natural way to an initial reachability model semantics for
rewriting logic.

8

Executing Rewrite Theories

Rewriting logic’s rules of deduction allow us to reason correctly.
But because they are based on the general equational deduction
relation, which in general is undecidable, it may be undecidable
whether an inference step can be taken. Consider, for example, the
inference rule:

Equality. (∀X) u −→ v E ⊢ (∀X)u = u′ E ⊢ (∀X)v = v′

(∀X) u′ −→ v′

In general it may undecidable whether E can prove u and u′ equal.
Furthermore, even if E is decidable, there may be an infinite
number of terms in E-equivalence classes; so we may need to start
an infinite search for a term u we can rewrite. Therefore, to
effectively decide whether the Equality rule can be applied we need
stronger assumptions on E.

9

Executing Rewrite Theories (II)

The best possible situation is assuming that E is a collection B of
equational axioms, such as associativity, commutativity, and
identity, for which we have an B-matching algorithm, so that given
a rewrite rule t −→ t′ and terms u′, v′ it becomes decidable whether
we can perform a one-step rewrite u −→ v using t −→ t′ with
u =B u′ and v =B v′. Recall Lecture 5, where (changing E there by
R here) the analogue of the Equality inference step was achieved
with the decidable relation −→R/B .

In practice, what may be reasonable to have as equations in a
rewrite theory R is a disjoint union E ∪B with B as above and E

ground confluent, sort-decreasing, and terminating modulo B, that
is, the usual executability assumptions for functional modules.

10

Executing Rewrite Theories (III)

The key idea is now the following. Given a rewrite theory
R = (Σ, E ∪B,ϕ,R) with E ∪B having the just-mentioned
executability assumptions we can simulate it and make it decidable
by means of the rewrite theory R̂ = (Σ, B, ϕ, E⃗ ∪R), where, by
definition, E⃗ = {t −→ t′ | (t = t′) ∈ E}.

In what follows we will assume that both the equations E and the
rules R are unconditional, and that for each rule t −→ t′ in R,
vars(t′) ⊆ vars(t). The ideas can be generalized to the conditional
case but this requires a somewhat more complex transformed
theory R̂. The equivalence we want is:

R ⊢ t −→ t′ ⇔ R̂ ⊢ canE/B(t) −→ canE/B(t
′)

11

Executing Rewrite Theories (IV)

It is easy to prove by induction on the depth of rewrite proofs that
we always have the implication

R ⊢ t −→ t′ ⇐ R̂ ⊢ canE/B(t) −→ canE/B(t
′)

The hard part is the reverse implication, which in general may fail
to hold. For example, if we have B = ∅, E = {a = c}, and
R = {a −→ b}, we obviously have R ⊢ a −→ b, but we cannot prove
R̂ ⊢ c −→ b.

The question then becomes one of finding suitable checkable
conditions under which the above implication becomes an
equivalence. This is to the topic of coherence, a property studied by
P. Viry (TCS 285, 487–517, 2002), and extended to the conditional
order-sorted case by Durán&Meseguer (JLAP, 81, 816–850, 2012).

12

Coherence

Assuming E confluent (resp. ground confluent), sort-decreasing
and terminating modulo B, we say that the rules R are coherent
(resp. ground coherent) with E modulo B relative to ϕ if for each
Σ-term t (resp. ground Σ-term t) such that t −→1

Rϕ/B t′ and
u = canE/B(t) we have:

t
1

Rϕ/B

//

!E/B ��

t′

!
E/B

!!
w

u
1

Rϕ/B

// u′

!
E/B

==

13

Coherence (II)

Throughout we will assume that B is any combination of
associativity, commutativity, and identity axioms, and that Σ is
preregular modulo B. The relation −→E/B is the relation of
rewriting with E modulo B zero, one, or more steps, denoted
−→∗

E/B in Lecture 5. The symbol “!” indicates a terminating
rewrite. The one-step rewriting relation −→1

Rϕ/B with R modulo B

is the restriction to frozennes conditions ϕ of what would be
denoted −→R/B in Lecture 5.

The Viry paper (TCS 285, 487–517, 2002) gives “critical pair-like”
conditions to check coherence. The Maude Coherence Checker Tool
checks coherence of conditional rules modulo combinations of
associativity, commutativity and identity, except associativity
without commutativity.

14

More on Rewriting Proofs

We want to prove that coherence implies our desired equivalence

R ⊢ t −→ t′ ⇔ R̂ ⊢ canE/B(t) −→ canE/B(t
′)

In order to prove this result, it will be technically convenient to use
a somewhat more restrictive set of inference rules, yet the proof
system ⊢′ thus obtained will be equivalent in proving power to the
original one. The key point is to make explicit the one-step
rewriting relation −→1 as a subrelation of −→. For this we have
the rules:

• Reflexivity. For each t ∈ TΣ(X),
(∀X) t −→ t

• Equality. (∀X) u −→ v E ⊢ (∀X)u = u′ E ⊢ (∀X)v = v′

(∀X) u′ −→ v′

15

• Congruence’. For each f : k1 . . . kn −→ k in Σ, with
j ∈ {1, . . . , n} − ϕ(f), with ti ∈ TΣ(X)ki

, 1 ≤ i ≤ n, and with
t′j ∈ TΣ(X)kj

,

(∀X) tj −→1 t′j
(∀X) f(t1, . . . , tj , . . . , tn) −→1 f(t1, . . . , t

′
j , . . . , tn)

• Replacement’. For each rule in R of the form,

l : (∀X) t −→ t′ ⇐ (
∧
i

ui = u′
i) ∧ (

∧
j

wj −→ w′
j)

and finite substitution θ : X −→ TΣ(Y),
(
∧

i(∀Y) uiθ = u′
iθ) ∧ (

∧
j(∀Y) wjθ −→ w′

kθ)

(∀Y) tθ −→1 t′θ

• Transitivity’
(∀X) t1 −→1 t2 (∀X) t2 −→ t3

(∀X) t1 −→ t3

16

More on Rewriting Proofs (II)

The two main lemmas below about this equivalent inference system
have somewhat tedious but essentially unproblematic proofs by
induction, that are left as exercises.

Lemma (Equivalence)

R ⊢ (∀X) t −→ t′ ⇔ R ⊢′ (∀X) t −→ t′

Lemma (Sequentialization) Wenever we have R ⊢′ (∀X) t −→ t′

there is an n ≥ 0 and proofs R ⊢′ (∀X) ti −→1 t′i, 1 ≤ i ≤ n, such
that: E ⊢ (∀X) t = t1, E ⊢ (∀X) t′i = ti+1, 1 ≤ i ≤ n, and
E ⊢ (∀X) t′n = t′.

17

Semantic Equivalence through Coherence

We are now ready to prove our main result about the semantic
equivalence of R and R̂.

Theorem. For R an unconditional rewrite theory satisfying the
assumptions on Σ, E, B, and R already mentioned, and such that
R is coherent with E modulo B w.r.t. ϕ we have:

R ⊢ t −→ t′ ⇔ R̂ ⊢ canE/B(t) −→ canE/B(t
′)

Proof: We only need to prove the implication (⇒). By the
Equivalence and Sequentialization Lemmas there is an n ≥ 0 and
proofs R ⊢′ (∀X) ti −→1 t′i, 1 ≤ i ≤ n, such that:
E ∪B ⊢ (∀X) t = t1, E ∪B ⊢ (∀X) t′i = ti+1, 1 ≤ i ≤ n, and
E ∪B ⊢ (∀X) t′n = t′. We can now proceed by induction on n.

18

Semantic Equivalence through Coherence (II)

For n = 0 we have canE/B(t) = canE/B(t
′) and a proof in R̂ can be

found by Reflexivity and Equality. Let us assume that the result
holds for n and let us prove it for n+ 1. The point is then that, by
repeated application of Equality and Transitivity, we can build
proofs R ⊢′ (∀X) t −→ tn+1 and R ⊢′ (∀X) tn+1 −→ t′, where the
first proof can be sequentialized with n 1-step rewrites, and the
second with only one 1-step rewrite. By the induction hypothesis
we then have R̂ ⊢ canE/B(t) −→ canE/B(tn+1). So we will be done
by repeatedly using Transitivity’ if we can show
R̂ ⊢ canE/B(tn+1) −→ canE/B(t

′). Note that we have a proof
R(∀X) ⊢′ tn+1 −→1 t′n+1, which by its very definition makes no
use of Equality. Therefore we have a one-step rewrite
tn+1 −→1

Rϕ t′n+1, and a fortiori tn+1 −→1
Rϕ/B t′n+1.

19

Semantic Equivalence through Coherence (III)

We also have a proof E ∪B ⊢ (∀X) t′n+1 = t′; therefore
canE/B(t

′
n+1) = canE/B(t

′). The desired proof of
R̂ ⊢ canE/B(tn+1) −→ canE/B(t

′) then follows by Coherence (see
diagram) by repeated application of Equality and Transitivity.
q.e.d.

tn+1
1

Rϕ/B

//

!E/B ��

t′n+1

!
E/B

%%
canE/A(t

′)

canE/A(tn+1)
1

Rϕ/B

// u′

!
E/B

99

20

The Canonical Reachability Model CR

Given a system module mod R endm, with, say,
R = (Σ, E ∪B,ϕ,R), Maude assumes the following executability
conditions: (i) Σ is preregular modulo B; (ii) E is ground
confluent, sort-decreasing, and terminating modulo B; and (iii) R is
ground coherent with E modulo B relative to ϕ. By the semantic
equivalence theorem we have just proved, Maude can then
essentially use R̂ to compute in R (we have seen the case when R
is unconditional, but this generalizes to the conditional case).

Under these circumstances we can define a very intutive
reachability model that exactly corresponds to the computational
behavior experienced by a Maude user.

21

The Canonical Reachability Model CR (II)

Given a rewrite theory R = (Σ, E ∪B,ϕ,R) satisfying the above
executability conditions, we can define the canonical reachability
model CR = (CΣ,E/B ,→CR), were CΣ,E/B is the canonical term
algebra modulo B for (Σ, E ∪B) as defined in Lecture 5, and →CR

is the reflexive and transitive closure of the relation →1
CR

where, by
definition, given [t], [t′] ∈ CΣ.E/B,k for some kind k we have
[t] →1

CR
[t′] if and only if there is a ground Σ-term u such that

t −→1
Rϕ/B u and [canE/B(u)] = [t′].

The result of a Maude rewrite command, beginning with a term t

in canonical form, is always a term t′ such that t →CR t′. Similarly,
the nodes of the search graph computed by a search command are
exactly elements of CΣ,E/B and the edges are exactly →1

CR
-edges.

22

The Canonical Reachability Model CR (III)

The importance of CRis that it provides a perfect agreement
between mathematical and operational semantics, since we have,

Theorem. Under the above executability assumptions (i)–(iii) we
have an isomorphism of reachability models

TR ∼= CR

Proof: We already have an isomorphism TΣ/E∪B
∼= CΣ,E/A,

mapping [t] to canE/A(t). The remaining part of the proof boils
down to proving that [t] →R [t′] iff [canE/B(t)] →CR [canE/B(t

′)],
which by the definition of →CR follows easily from the proof of
semantic equivalence between R and R̂. q.e.d.

23

Verification of Declarative Concurrent Programs

We are now ready to discuss the subject of verification of
declarative concurrent programs, and, more specifically, the
verification of properties of Maude system modules, that is, of
declarative concurrent programs that are rewrite theories.

There are two levels of specification involved: (1) a system
specification level, provided by the rewrite theory and yielding an
initial model for our program; and (2) a property specification
level, given by some property (or properties) φ that we want to
prove about our program. To say that our program satisfies the
property φ then means exactly to say that its initial model does.

24

Verification of Declarative Concurrent Programs (II)

Specifically, we have considered the reachability initial model, TR
of a rewrite theory R.

The question then becomes, which language shall we use to express
the properties φ that we want to prove hold in the model TR?
That is, how should we express relevant properties φ such that,

TR |= φ.

The first, most obvious possibility is to use a first-order language
based on the signature Σ together with a family of binary
transition relations {→k}k∈K .

25

Verification of Declarative Concurrent Programs (IV)

In particular, we can consider a modal logic M(Σ, ϕ), expressing
properties based on necessity, 2φ, and possibility, 3φ, which can
be regarded as a sublanguage of such a first-order language. We
will focus on properties 2I, with I a predicate on states, stating
that I is an invariant.

But not all properties of interest are expressible in M(Σ, ϕ). For
example, properties involving fairness, and other properties related
to the infinite behavior of a system typically are not expressible in
M(Σ, ϕ). For such properties we can use some kind of temporal
logic. We will give particular attention to linear temporal logic
(LTL) because of its intuitive appeal, widespread use, and
well-developed proof methods and decision procedures.

26

Invariants

Rather than developing in full detail the logic M(Σ, ϕ), for the
moment we will focus on invariants. Invariants specify safety
properties, that is, properties guaranteeing that nothing “bad” can
happen or, equivalently, that the system will always be in a “good”
state. Given a rewrite theory R, a chosen kind k of states, and an
equationally-defined Boolean predicate I on states of kind k, we say
that I is an invariant for TR beginning in an initial state [t], written

TR, [t] |= 2I

if and only if TR satisfies the following first-order formula:

(∀x : k) (t → x) ⇒ I(x) = true.

27

Invariants (II)

Since the reachability relation is reflexive and transitive this
exactly means that: (i) I(t) = true, and (ii) for any state x

reachable from t we have I(x) = true. Therefore the predicate I

specifies some good property that our system must always satisfy;
and the fact that we have TR, [t] |= 2I means that our system is
I-safe, in the sense that the bad thing, namely ¬I, will never
happen in any state reachable from our initial state [t].

Given any (Σ, ϕ)-reachability model A→ = (A,→A) a kind k and
an element a ∈ Ak, we define ReachA→(a) = {x ∈ Ak | a →A x}.
Similarly, given a Boolean predicate I with arguments of kind k we
define [|I|]A→ = {x ∈ Ak|IA(x) = trueA}.

28

Invariants (III)

Therefore, we have,

TR, [t] |= 2I ⇔ ReachTR([t]) ⊆ [|I|]TR

More generally, given any (Σ, ϕ)-reachability model A→ = (A,→A)

we can define the invariant satisfaction relation A→, a |= 2I as the
containment ReachA→(a) ⊆ [|I|]A→ .

In other words, the predicate I carves out a set [|I|]A→ of “good”
states. Satisfying the invariant I just means that our set
ReachA→(a) of reachable states is always inside the “safe envelope”
[|I|]A→ . An interesting question is how to verify such invariants.

29

