
Program Verification: Lecture 15

José Meseguer

Computer Science Department
University of Illinois at Urbana-Champaign

1

Concurrent Objects in Rewriting Logic

Rewriting logic can model very naturally many different kinds of
concurrent systems. We have, for example, seen that Petri nets can
be naturally formalized as rewrite theories. The same is true for
many other models of concurrency such as CCS, the π-calculus,
dataflow, real-time models, and so on.

One of the most useful and important classes of concurrent systems
is that of concurrent object systems, made out of concurrent
objects, which encapsulate their own local state and can interact
with other objects in a variety of ways, including both synchronous
interaction, and asynchronous communication by message passing.

2

Concurrent Objects in Rewriting Logic (II)

It is of course possible to represent a concurrent object system as a
rewrite theory with somewhat different modeling styles and
adopting different notational conventions.

What follows is a particular style of representation that has proved
useful and expressive in practice, and that is supported by Full
Maude’s object-oriented modules.

It is also possible to define object-oriented modules in Core Maude
using the conf attribute to specify an associative commutative
multiset union operators as a constructor of configurations of
objects and messages; the frewrite command then ensures object
and message fair executions (see the All About Maude book).

3

Concurrent Objects in Rewriting Logic (III)

To model a concurrent object system as a rewrite theory, we have
to explain two things:

• how the distributed states of such a system are equationally
axiomatized and modeled by the initial algebra of an
equational theory (Σ, E), and

• how the concurrent interactions between objects are
axiomatized by rewrite rules.

We first explain how the distributed states are equationally
axiomatized.

4

Configurations

Let us consider the key state-building operations in Σ and the
equations E axiomatizing the distributed states of concurrent
object systems. The concurrent state of an object-oriented system,
often called a configuration, has typically the structure of a
multiset made up of objects and messages.

Therefore, we can view configurations as built up by a binary
multiset union operator which we can represent with empty syntax
(i.e. juxtaposition) as,

_ _ : Conf ×Conf −→ Conf .

5

Configurations (II)

The operator _ _ is declared to satisfy the structural laws of
associativity and commutativity and to have identity null. Objects
and messages are singleton multiset configurations, and belong to
subsorts

Object Msg < Conf ,

so that more complex configurations are generated out of them by
multiset union.

6

Configurations (III)

An object in a given state is represented as a term

⟨O : C | a1 : v1, . . . , an : vn⟩

where O is the object’s name or identifier, C is its class, the ai’s are
the names of the object’s attribute identifiers, and the vi’s are the
corresponding values.

The set of all the attribute-value pairs of an object state is formed
by repeated application of the binary union operator _ , _ which
also obeys structural laws of associativity, commutativity, and
identity; i.e., the order of the attribute-value pairs of an object is
immaterial.

7

Configurations (IV)

The value of each attribute shouldn’t be arbitrary: it should have
an appropriate sort, dictated by the nature of the attribute.
Therefore, in Full Maude object classes can be declared in class
declarations of the form,

class C | a1 : s1, . . . , an : sn .

where C is the class name, and si is the sort required for attribute
ai.

We can illustrate such class declarations by considering three
classes of objects, Buffer, Sender, and Receiver.

8

Configurations (IV)

A buffer stores a list of integers in its q attribute. Lists of integers
are built using an associative list concatenation operator, _ . _ with
identity nil, and integers are regarded as lists of length one. The
name of the object reading from the buffer is stored in its reader
attribute; such names belong to a sort Oid of object identifiers.
Therefore, the class declaration for buffers is,

class Buffer | q : IntList, reader: Oid .

The sender and receiver objects store an integer in a cell attribute
that can also be empty (mt) and have also a counter (cnt)
attribute. The sender stores also the name of the receiver in an
additional attribute.

9

Configurations (V)

The counter attribute is used to ensure that messages are received
by the receiver in the same order as they are sent by the sender,
even though communication between the two parties is
asynchronous.

Each time the sender gets a new value from the buffer, it
increments its counter. It later uses the current value of the
counter to tag the message sent with that value to the receiver.

The receiver only accepts a message whose tag is its current
counter. It then increments its counter indicating that it is ready
for the next message.

10

Configurations (VI)

The class declarations are:

class Sender | cell: Int?, cnt: Int, receiver: Oid .
class Receiver | cell: Int?, cnt: Int .

where Int? is a supersort of Int having a new constant mt.

In Full Maude one can also give subclass declarations, with
subclass syntax (similar to that of subsort) so that all the
attributes and rewrite rules of a superclass are inherited by a
subclass, which can have additional attributes and rules of its own.

11

Configurations (VII)

The messages sent by a sender object have the form,

(to Z : E from (Y,N))

where Z is the name of the receiver, E is the number sent, Y is the
name of the sender, and N is the value of its counter at the time of
the sending.

The syntax of messages is user-definable; it can be declared in Full
Maude by message operator declarations. In our example by:

msg (to _ : _ from (_,_)) : Oid Int Oid Int -> Msg .

12

Object Rewrite Rules

The associativity and commutativity of a configuration’s multiset
structure make it very fluid. We can think of it as “soup” in which
objects and messages float, so that any objects and messages can at
any time come together and participate in a concurrent transition
corresponding to a communication event of some kind.

In general, the rewrite rules in R describing the dynamics of an
object-oriented system can have the form,

13

Object Rewrite Rules (II)

r : M1 . . .Mn ⟨O1 : F1 | atts1⟩ . . . ⟨Om : Fm | attsm⟩

−→ ⟨Oi1 : F ′
i1
| atts ′i1⟩ . . . ⟨Oik : F ′

ik
| atts ′ik⟩

⟨Q1 : D1 | atts ′′1⟩ . . . ⟨Qp : Dp | atts ′′p⟩

M ′
1 . . .M

′
q

if C

where r is the label, the Ms are message expressions, i1, . . . , ik are
different numbers among the original 1, . . . ,m, and C is the rule’s
condition.

14

Object Rewrite Rules (III)

That is, a number of objects and messages can come together and
participate in a transition in which some new objects may be
created, others may be destroyed, and others can change their
state, and where some new messages may be created.

If two or more objects appear in the lefthand side, we call the rule
synchronous, because it forces those objects to jointly participate in
the transition. If there is only one object and at most one message
in the lefthand side, we call the rule asynchronous.

15

Object Rewrite Rules (IV)

Three typical rewrite rules involving objects in the Buffer, Sender,
and Receiver classes are,

rl [read] : < X : Buffer | q: L . E, reader: Y >
< Y : Sender | cell: mt, cnt: N >

=> < X : Buffer | q: L, reader: Y >
< Y : Sender | cell: E, cnt: N + 1 >

rl [send] : < Y : Sender | cell: E, cnt: N, receiver: Z >
=> < Y : Sender | cell: mt, cnt: N > (to Z : E from (Y,N))

rl [receive] : < Z : Receiver | cell: mt, cnt: N >
(to Z : E from (Y,N))

=> < Z : Receiver | cell: E, cnt: N + 1 >

where E and N range over Int, L over IntList, X, Y, Z over Oid,
and L . E is a list with last element E.

16

Object Rewrite Rules (V)

Notice that the read rule is synchronous and the send and
receive rules asynchronous.

Of course, these rules are applied modulo the associativity and
commutativity of the multiset union operator, and therefore allow
both object synchronization and message sending and receiving
events anywhere in the configuration, regardless of the position of
the objects and messages.

We can then consider the rewrite theory R = (Σ, E,R)

axiomatizing the object system with these three object classes, with
R the three rules above (and perhaps other rules, such as one for
the receiver to write its contents into another buffer object, that
are omitted).

17

Rewrite Theories in General

It is clear that rewriting logic has the underlying equational logic
as a parameter: the more general the equational logic, the more
general the resulting rewite theories. For example, we have seen
that for order-sorted equational logic rules can have the general
form,

l : t −→ t′ ⇐ (
∧
i

ui = u′
i) ∧ (

∧
j

wj −→ w′
j).

It has also become increasingly clear that frozen operators, that
restrict the rewrites allowed below them, are also very useful in
practice.

18

Rewrite Theories in General (II)

We can illustrate frozen operators with the following
nondeterministic choice example (in Maude syntax):

mod CHOICE is
protecting INT .
sorts Elt MSet .
subsorts Elt < MSet .
ops a b c d e f g : -> Elt .
op __ : MSet MSet -> MSet [assoc comm] .
op card : MSet -> Int [frozen] .
eq card(X:Elt) = 1 .
eq card(X:Elt M:MSet) = 1 + card(M:MSet) .
rl [choice] : X:MSet Y:MSet => Y:MSet .

endm

19

Rewrite Theories in General (III)

It does not make much sense to rewrite below the cardinality
function card, because then the multiset whose cardinality we wish
to determine becomes a moving target.

If card had not been declared frozen, then the rewrites,
a b c −→ b c −→ c would induce rewrites, 3 −→ 2 −→ 1, which
seems bizarre.

The point is that we think of the kind [MSet] as the state kind in
this example, whereas [Int] is the data kind. By declaring card
frozen, we restrict rewrites to the state kind, where they belong.

20

Rewrite Theories in General (IV)

This leads to the following general definition of a rewrite theory on
order-sorted equational logic:
A rewrite theory is a 4-tuple, R = (Σ, E, ϕ,R), where:

• (Σ, E) is a kind-complete order-sorted equational theory, with,
say, kinds K, sorts S, and operations Σ

• ϕ : Σ −→ Pfin(IN) is a K∗ ×K-indexed family of functions
assigning to each f : k1 . . . kn −→ k in Σ the finite set
ϕ(f) ⊆ {1, . . . , n} of its frozen argument positions

• R is a set of (universally quantified) labeled conditional rewrite
rules of the form (with t, t′ and the wk, w

′
k pairs of terms of

same kind)

l : t −→ t′ ⇐ (
∧
i

ui = u′
i) ∧ (

∧
j

wj −→ w′
j).

21

Rewrite Theories in General (V)

Given a rewrite theory R = (Σ, E, ϕ,R), and given a Σ-term
t ∈ TΣ(X), we call a variable x ∈ vars(t) frozen in t iff there is a
nonvariable position α ∈ IN∗ such that t/α = f(u1, . . . , ui, . . . , un),
with i ∈ ϕ(f), and x ∈ vars(ui). Otherwise, we call x ∈ X

unfrozen.

Similarly, given Σ-terms t, t′ ∈ TΣ(X), we call a variable x ∈ X

unfrozen in t and t′ iff it is unfrozen in both t and t′.

22

Rewriting Logic in General

Given a rewrite theory R = (Σ, E, ϕ,R), the sentences that it
proves are universally quantified rewrites of the form, (∀X) t −→ t′,
with t, t′ ∈ TΣ,E(X)k, for some kind k, which are obtained by finite
application of the following rules of deduction:

• Reflexivity. For each t ∈ TΣ(X),
(∀X) t −→ t

23

• Equality. (∀X) u −→ v E ⊢ (∀X)u = u′ E ⊢ (∀X)v = v′

(∀X) u′ −→ v′

• Congruence. For each f : k1 . . . kn −→ k in Σ, with
{1, . . . , n} − ϕ(f) = {j1, . . . , jm}, with ti ∈ TΣ(X)ki

, 1 ≤ i ≤ n,
and with t′jl ∈ TΣ(X)kjl

, 1 ≤ l ≤ m,

(∀X) tj1 −→ t′j1 . . . (∀X) tjm −→ t′jm
(∀X) f(t1, . . . , tj1 , . . . , tjm , . . . , tn) −→ f(t1, . . . , t

′
j1
, . . . , t′jm , . . . , tn)

24

• Replacement. For each finite substitution θ : X −→ TΣ(Y),
with, say, X = {x1, . . . , xn}, and θ(xl) = pl, 1 ≤ l ≤ n, and for
each rule in R of the form,

l : (∀X) t −→ t′ ⇐ (
∧
i

ui = u′
i) ∧ (

∧
j

wj −→ w′
j)

with Z = {xj1 , . . . , xjm}, the set of unfrozen variables in t and
t′, then,

(
∧
r

(∀Y) pjr −→ p′jr)

(
∧

i(∀Y) θ(ui) = θ(u′
i)) ∧ (

∧
j(∀Y) θ(wj) −→ θ(w′

j))

(∀Y) θ(t) −→ θ′(t′)

where for x ∈ X − Z, θ′(x) = θ(x), and for xjr ∈ Z,
θ′(xjr) = p′jr , 1 ≤ r ≤ m.

25

• Transitivity

(∀X) t1 −→ t2 (∀X) t2 −→ t3
(∀X) t1 −→ t3

26

Rewriting Logic in Pictures

Reflexivity
�

�
��

@
@

@@
t

-
�

�
��

@
@
@@

t

Equality
�

�
��

@
@

@@
u

-
�

�
��

@
@
@@

v

∥
�

�
��

@
@

@@
u

′ -

∥
�

�
��

@
@
@@

v
′

27

Rewriting Logic in Pictures (II)

Congruence
f

�
��

�
�
A
A
Q
QQ.

�� AA �� AA �� AA �� AA

f
�

��
�
�
A
A
Q
QQ.

�� AA �� AA �� AA �� AA� ��*� ��3

-

Replacement
�

��

@
@@

t

�� AA �� AA �� AA �� AA
.

�
��

@
@@

t
′

�� AA �� AA �� AA �� AA
.� ��*� ��3

-

28

Rewriting Logic in Pictures (III)

Transitivity

�
�

�
��

@
@

@
@@

t1

- �
�

�
��

@
@

@
@@

t3

�
�

�
��

@
@

@
@@

t2

@
@
@R �

�
��

29

Computational Meaning of the Inference Rules

Rewriting logic is a computational logic to specify concurrent
systems. Its inference system allows us to infer all the possible
finitary concurrent computations of a system specified as a rewrite
theory R as follows:

• Reflexivity is just the possibility of having idle transitions

• Equality means that states are equal modulo E

• Congruence is a general form of sideways parallelism

• Replacement combines an atomic transition at the top using a
rule with nested concurrency in the substitution

• Transitivity is sequential composition of concurrent transitions.

30

Logical and Computational Readings

A rewrite theory R = (Σ, E,R) has two closely related, yet
different, readings, one computational, and another logical.

Computationally, a rewrite theory specifies a concurrent system,
whose set of states is (a kind in) the initial algebra TΣ/E . Then,
each rewrite rule specifies a parameterized family of concurrent
transitions in the system.

Logically, a rewrite theory specifies a logic, whose set of formulas is
(a kind in) the initial algebra TΣ/E . Then, each rewrite rule
specifies an inference rule in the logic.

31

Logical and Computational Readings (II)

For example, the logic of implication is:
mod MINIMALR is sorts SentConstant Formula Configuration .
subsorts SentConstant < Formula < Configuration .
op _→_ : Formula Formula -> Formula .
op empty : -> Configuration .
op __ : Configuration Configuration -> Configuration [assoc comm id: empty] .
vars A B C : Formula .
rl [ax.K] : empty

=> ----------------
A → (B → A) .

rl [ax.S] : empty
=> ---

(A → B) → ((A →(B → C)) → (A → C)) .
rl [mp] : (A → B) A

=> ------------------
B .

endm

32

Logical and Computational Readings (III)

The computational and logical readings are not mutually exclusive.
Rather, the same theory can be regarded computationally, or
logically, or both!, depending on one’s point of view.

For example, logically, our PETRI-MACHINE example is a linear logic
theory in disguise. It is just a matter of a slight change of syntax,
replacing the empty syntax, _ _ by that of linear logic’s
multiplicative conjunction operator _⊗_.

33

Logical and Computational Readings (IV)

The operator _⊗_ can be viewed as a form or resource-conscious
non-idempotent conjunction. Then, the state a⊗ q ⊗ q corresponds
to having an apple and a quarter and a quarter, which is a strictly
better situation than having an apple and a quarter
(non-idempotence of ⊗).

Then, in order to get the tensor theory corresponding to
PETRI-MACHINE, it is enough to change the arrows into turnstiles,
getting the following axioms:

buy-c : $ ⊢ c

buy-a : $ ⊢ a⊗ q

change : q ⊗ q ⊗ q ⊗ q ⊢ $

34

Logical and Computational Readings (V)

The point is that we have the following equivalences between these
two readings:

State ←→ Term ←→ Formula

Computation ←→ Rewriting ←→ Proof

Distributed ←→ Algebraic ←→ Logical
Structure Structure Structure

In particular, concurrent computations in our Petri net example
coincide with linear logic proofs.

35

Exercises

Ex.20.1. Show in detail that, given a Petri net N , the inference
system given in pages 39–40 of Lecture 19 to generate all its
concurrent computations is equivalent to the specialization to the
theory R(N) of the general inference system for rewriting logic.

36

