
Program Verification: Lecture 13

José Meseguer

Computer Science Department

University of Illinois at Urbana-Champaign

1

The ITP Inference Rules

Notice that in the ITP we reason backwards, replacing the

main goal G we want to prove by subgoals, G1, . . . , Gn, such

that if we prove each of the subgoals, then we have proved

the main goal.

For such an inference to be sound, the implication

G1 ∧ . . . ∧Gn ⇒ G

should always be satisfied, that is, should be semantically

valid in the initial algebra TΣ,E on which we are doing the

inductive reasoning.

2

The ITP Inference Rules (II)

Such semantically valid inferences are expressed as inference

rules

G1 . . . Gn

G

However, since we are reasoning backwards, from the root

of the proof tree to the leaves, the ITP uses such rules in

the opposite direction, as rules

G

G1 . . . Gn

We will illustrate through an example such backward

reasoning for several ITP inference rules besides the

induction rule, and will at the same time justify their

soundness.

3

Linearity of the Number Ordering

Consider the following module defining the order on

numbers, which we would like to prove is linear.

fmod NATURAL-ORD is

sort Natural .

op 0 : -> Natural [ctor] .

op s : Natural -> Natural [ctor] .

op _<_ : Natural Natural -> Bool .

op _=<_ : Natural Natural -> Bool .

vars N M : Natural .

eq N < 0 = false .

eq 0 < s(N) = true .

eq s(N) < s(M) = N < M .

ceq N =< M = true if N < M .

ceq N =< M = true if not(M < N) .

ceq N =< M = false if M < N .

endfm

4

The cns Inference Rule

After entering the goal stating that the order on the

naturals is linear, one of the possible ITP inference rules we

can invoke is the lemma of constants, which converts

universally quantified variables in a goal into constants.

Maude> (goal linear : NATURAL-ORD |- A{N:Natural ; M:Natural}

(((N =< M) or (M =< N)) = (true)) .)

=================================

label-sel: linear@0

=================================

A{N:Natural ; M:Natural}

N:Natural =< M:Natural or M:Natural =< N:Natural = true

+++++++++++++++++++++++++++++++++

Maude> (cns .)

5

=================================

label-sel: linear@0

=================================

N*Natural =< M*Natural or M*Natural =< N*Natural = true

+++++++++++++++++++++++++++++++++

6

The cns Inference Rule (II)

The fact that this is a semantically valid inference is based

on the Constants Lemma, which states the equivalence

between satisfiability of a quantified equation, and of the

same equation with the variables transformed into generic

constants (we assume vars(E) ∩ vars(t = t′) = ∅):

E |=Σ t = t′ ⇔ E |=Σ(X) t = t′.

Thanks to the completeness of equational reasoning, this is

expressed in the ITP as the cns rule,

E ⊢Σ t = t′

E ⊢Σ(X) t = t′

which is an equivalence by the rewriting definition of =E.

7

Reasoning by Cases: The split Rule

To prove our goal, we can now reason by cases. For each

pair of natural numbers n,m, either n < m = true, or

n < m = false. Therefore, we can split a goal involving n

and m into two subgoals: one in which we assume

n < m = true as an extra hypothesis, and another in which

we assume n < m = false.

In the ITP this is accomplished by the split rule, which,

given an unquantified goal without variables (only “generic”

constants like n,m) and given a Boolean-valued expression

involving some of those generic constants, splits a given

goal into two: one assuming the expression true, and

another assuming it false.

8

Reasoning by Cases: The split Rule (II)

In our example we can give the split command,

Maude> (split on (N*Natural < M*Natural) .)

=================================

label-sel: linear@1.0

=================================

N*Natural =< M*Natural or M*Natural =< N*Natural = true

=================================

label: linear@2.0

=================================

N*Natural =< M*Natural or M*Natural =< N*Natural = true

+++++++++++++++++++++++++++++++++

9

Reasoning by Cases: The split Rule (III)

The goals remain the same, but the split hypotheses for

each case have been added to each case’s module. Using

these hypotheses we can now discharge each of the

subgoals with the auto tactic.

Maude> (auto .)

=================================

label-sel: linear@2.0

=================================

N*Natural =< M*Natural or M*Natural =< N*Natural = true

+++++++++++++++++++++++++++++++++

Maude> (auto .)

q.e.d

+++++++++++++++++++++++++++++++++

10

Caveats on the split Rule

As already mentioned, the present version of the ITP

requires that the goal to which the split rule is applied is

an unquantified goal without variables, in which only

“generic” constants —such as N*Natural and M*Natural in

our example— appear.

This requirement will be relaxed in future ITP versions, but

it is assumed and required by the present version.

Therefore, applications of split to quantified goals with

variables are currently forbidden: in the present ITP version

we must first transform such variables into generic

constants using cns.

11

Applications of split Should Protect BOOL

Regardless of the current ITP restrictions in the application

of split, there is a fundamental way in which the

application of split would be unsound, namely, if we have

messed up the Booleans by adding junk and perhaps

confusion to them, so that we do not have anymore two

different canonical forms, true, and false, but may have

other nonstandard Boolean elements as well.

This can happen because, when defining new predicates

with operators of sort Bool, we do not give enough

equations, thus adding “junk” to Bool, or we give the wrong

equations, adding “confusion” and possibly also “junk” to

Bool. Therefore, for an application of split to be sound, it

is enough to require that the BOOL submodule is protected.

12

Protecting Module Importations

In general, if we have a theory (Σ, E) having a subtheory

(Σ′, E′) with,

Σ′ ⊆ Σ and E′ ⊆ E,

and the module fmod(Σ, E)endfm imports the submodule

fmod(Σ′, E′)endfm in protecting mode, we require that the

unique Σ′-homomorphism

E′

TΣ/E |
Σ′

: TΣ′/E′ −→ TΣ/E |Σ′

is an isomorphism.

13

Protecting Module Importations (II)

Checking that BOOL is protected in a supermodule

fmod(Σ, E)endfm is quite easy, since it reduces to checking

that:

1. In (Σ, E) the only constructors of sort Bool are true and

false.

2. (Σ, E) is ground confluent, terminating, sort decreasing,

and sufficiently complete relative to the given signature

Ω of declared constructors; and

3. true and false are in E-canonical form.

14

Justification of the split Rule

Suppose that we are reasoning inductively about a module

fmod(Σ, E)endfm, which correctly imports BOOL in protecting

mode (Note: this must be checked independently, as an

implicit proof obligation).

In BOOL we have,

TBOOL |= true 6= false

and we also have,

TBOOL |= (∀x : Bool) x = true ∨ x = false

Notice that, by the protecting importation, we have,

TΣ/E |ΣBOOL
∼= TBOOL.

15

Justification of the split Rule (II)

Therefore, given any Boolean valued Σ-term p ∈ TΣ(X)Bool,

and given any assignment a : X −→ TΣ/E, we have,

(TΣ/E , a) 6|= (p 6= true ∧ p 6= false).

That is, for any such assignment a, the above proposition is

equivalent to the identically false proposition, ⊥, which is

never satisfied:

(TΣ/E , a) |= (p 6= true ∧ p 6= false) ⇔ (TΣ/E , a) |= ⊥.

Now, since for any proposition A we always have the

Boolean equivalence, A ≡ A ∨ ⊥, we also have an

equivalence (∀X) A ≡ (∀X) (A ∨ ⊥). Therefore, given an

equation t = t′ with vars(t = t) ⊆ X we have,

16

Justification of the split Rule (III)

TΣ/E |= t = t′ ⇔ TΣ/E |= ((t = t′) ∨ ⊥)

or, equivalently,

TΣ/E |= (∀X) t = t′ ⇔ TΣ/E |= (∀X) ((t = t′)∨(p 6= true∧p 6= false))

which, using distributivity of disjunction over conjunction,
plus the fact that A ⇒ B ≡ (¬A) ∨B, is equivalent to,

TΣ/E |= (∀X) t = t′ ⇔ TΣ/E |= (∀X) (p = true ⇒ t = t′)∧(p = false ⇒ t = t′),

which, modulo the distribution of ∀ over ∧, is our desired

justification for split as a sound inductive reasoning rule.

17

Induction on Other Data Structures: Tree Induction

We have already seen examples of how the ITP’s ind rule

applies to natural number induction and to list induction.

Before discussing the most general form of the ind rule for

any signature of constructors Ω and its justification, we give

an example illustrating binary tree induction, in which the

data in leaves are seen as depth-zero trees.

The intuitive idea is that to prove an inductive property P

about such trees we must show: (1) that P holds for the

data elements (base case); and (2) that if P holds for the

left and right subtrees, then it must hold for their binary

join (induction step).

18

Induction on Other Data Structures: Tree Induction (II)

Consider the following module defining binary trees whose

nodes are quoted identifiers (constants in the predefined

module QID), and a reverse function on binary trees.

fmod TREE is

protecting QID .

sort Tree .

subsort Qid < Tree .

op _#_ : Tree Tree -> Tree [ctor] .

op rev : Tree -> Tree .

var I : Qid .

vars T T’ : Tree .

eq rev(I) = I .

eq rev(T # T’) = rev(T’) # rev(T) .

endfm

19

Induction on Other Data Structures: Tree Induction (III)

We can apply binary tree induction to prove that for all

trees T the equation rev(rev(T)) = T holds. We can do so

by entering the TREE module in the ITP and the goal:

Maude> (goal rev : TREE |- A{T:Tree}((rev(rev(T:Tree))) = (T:Tree)) .)

=================================

label-sel: rev@0

=================================

A{T:Tree} rev(rev(T:Tree)) = T:Tree

+++++++++++++++++++++++++++++++++

20

Induction on Other Data Structures: Tree Induction (IV)

We can then try to prove this goal by induction on T:Tree.

Maude> (ind on T:Tree .)

=================================

label-sel: rev@1.0

=================================

A{V0#0:Qid} rev(rev(V0#0:Qid)) = V0#0:Qid ==>

rev(rev(V0#0:Qid)) = V0#0:Qid

=================================

label: rev@2.0

=================================

A{V0#0:Tree ; V0#1:Tree} rev(rev(V0#1:Tree)) = V0#1:Tree &

rev(rev(V0#0:Tree)) = V0#0:Tree ==>

rev(rev(V0#0:Tree # V0#1:Tree)) = V0#0:Tree # V0#1:Tree

+++++++++++++++++++++++++++++++++

21

Induction on Other Data Structures: Tree Induction (V)

Note that goal rev@2.0 is the “induction step” in tree

induction, whereas the “base case” is goal rev@1.0. Both

subgoals can then be proved using the auto tactic.

Maude> (auto .)

=================================

label-sel: rev@2.0

=================================

A{V0#0:Tree ; V0#1:Tree} rev(rev(V0#1:Tree)) = V0#1:Tree &

rev(rev(V0#0:Tree)) = V0#0:Tree ==>

rev(rev(V0#0:Tree # V0#1:Tree)) = V0#0:Tree # V0#1:Tree

+++++++++++++++++++++++++++++++++

Maude> (auto .)

q.e.d

22

Structural Induction

We have already observed how the ITP supports inductive

proofs in three cases: natural number induction, list

induction, and tree induction. But what is the general form

of induction supported by the ITP for a specification having

a subsignature Ω of constructors? This general form is

called structural induction. It reduces proving an inductive

property of the form (∀x : s) P (x), to proving:

• Base Case. For any constant a : nil −→ s′ in Ω with

s′ ≤ s, the subgoal P (x 7→ a)

Notation: Given a variable x, the substitution {x 7→ t}

mapping x to a term t is abbreviated to (x 7→ t), and its

homomorphic extension is denoted (x 7→ t).

23

Structural Induction (II)

• Induction Step. For each constructor

f : s1 . . . snf
−→ s′ in Ω with s′ ≤ s, where the sorts

si1 , . . . , sikf
are those among the s1 . . . snf

such that

sij ≤ s, 1 ≤ j ≤ kf , the subgoal,

∧

1≤j≤kf

(∀xij)P (x 7→ xij) → (∀x1 : s1, . . . , xnf : snf) P (x 7→ f(x1, . . . , xnf)).

Note: It may happen that none of the sorts among the

s1 . . . snf
is s or a subsort of s. In that case, the subgoal

has the form (∀x1 : s1, . . . , xnf
: snf

) P (x 7→ f(x1, . . . , xnf
)).

• Subsorts Without Constructors. If s′ ≤ s is a subsort

having no constructor constants or operators in a sort

s′′ ≤ s′, then we add the subgoal (∀y : s′) P (x 7→ y).

24

Structural Induction (III)

Note: If the signature Ω of constructors has been fully

specified, the base case and the induction step implicitly

cover all subsorts, so that the third case should never arise,

except perhaps for s′ an empty sort, with no terms

whatsoever, for which the property P then trivially holds.

Therefore, from now on we will systematically ignore the

case of subsorts without constructors in the rest of our

theoretical discussions. In practice, however, this case is

actually quite useful, and this for two reasons:

25

Structural Induction (IV)

• to deal with constants in predeclared modules, such as

QID, which are built-in and are not defined as

constructors (we encountered this phenomenon in our

tree-reverse example); and

• to generalize these inductive proof methods to

parameterized modules, such as LIST(X), where the

parametric sort of elements might be a subsort of the

sort List(X), but we have no a priori information about

the constructors of such a parametric sort of elements.

26

Structural Induction (V)

Ignoring the case of subsorts without constructors, this then

becomes an inductive inference rule of the form,

∧
i
P (x 7→ai) ∧

∧
l

∧
1≤j≤kfl

(∀xij)P (x 7→xij) ⇒(∀x1, . . . , xnfl
) P (x 7→ fl(x1, . . . , xnfl

))

(∀x : s) P (x)

where the ai and the fj include all the constructor constants

and operators meeting the properties specified above.

In the ITP this rule is used backwards as the ind rule,

(∀x : s) P (x)∧
i
P (x 7→ai) ∧

∧
l

∧
1≤j≤kfl

(∀xij)P (x 7→xij) ⇒(∀x1, . . . , xnfl
) P (x 7→ fl(x1, . . . , xnfl

))

27

Justification of the ind Rule

Why is ind a sound inference rule? First consider:

Lemma: For (Σ, E) ground confluent, sort-decreasing, and

terminating with subsignature of constructors Ω, given any

Σ-equation t = t′ with X = vars(t = t′) we have:

TΣ/E |= t = t′ ⇔ ∀θ ∈ [X → TΩ] TΣ/E |= tθ = t′θ.

Proof: Since TΣ/E
∼= CΣ/E it is enough to prove that

CΣ/E |= t = t′ ⇔ ∀θ ∈ [X → TΩ] CΣ/E |= tθ = t′θ.

But, since CΣ/E ⊆ TΩ, any a : X −→ CΣ/E is a substitution

θ : X −→ TΩ, exactly one of the form θ = θ!E. Furthermore,

for each θ ∈ [X → TΩ] we have the equivalence,

CΣ/E |= tθ = t′θ ⇔ (tθ)!E = (t(θ!E))!E = (t′(θ!E))!E = (t′θ)!E .

28

Justification of the ind Rule (II)

But since any θ : X −→ CΣ/E satisfies θ = θ!E,

∀ θ ∈ [X → TΩ] (t(θ!E))!E = (t′(θ!E))!E exactly means

CΣ/E |= t = t′. q.e.d.

Notice that the above Lemma easily generalizes to the

modulo A case, that is, to theories (Σ, E ∪A) with E ground

confluent, sort-decreasing, and terminating modulo A and Σ

preregular modulo A. Our justification of the ind rule in

what follows works just the same for the modulo A case.

29

Justification of the ind Rule (III)

Notice that the argument of the above lemma does not

depend on our formula being actually an equation: by

reasoning inductively on the structure of formulas we can

show that the lemma applies to any universally-quantified

first-order formula of the form (∀x : s) P (x) (P itself can

have other quantifiers).

Therefore, we have reduced the problem of proving an

inductive property, (∀x : s) P (x), to that of proving that for

all t ∈ TΩ,s the instantiated property P (x 7→ t) holds.

Here is where structural induction steps in as a method,

namely, by analyzing more closely what it means to prove

something for all t ∈ TΩ,s.

30

Justification of the ind Rule (IV)

Theorem. (Soundness of Structural Induction). For (Σ, E)

ground confluent, sort-decreasing, and terminating with

subsignature of constructors Ω, if we have

TΣ/E |=
∧

i

P (x 7→ai) ∧
∧

l

∧

1≤j≤kfl

(∀xij)P (x 7→xij) ⇒(∀x1, . . . , xnfl
)P (x 7→fl(x1, . . . , xnfl

))

then we also have

TΣ/E |= (∀x : s) P (x).

Proof. Suppose not. This exactly means that the

hypothesis holds and there exists a ground constructor term

t ∈ TΩ,s such that TΣ/E 6|= P (x 7→ t). Choose such t ∈ TΩ,s of

smallest depth possible. That is any other t′ ∈ TΩ,s such

that TΣ/E 6|= P (x 7→ t′) must have tree depth greater or equal

to that of t.

31

Justification of the ind Rule (V)

Suc a term t cannot be a constant ai of sort less or equal to

s, since we have TΣ/E |=
∧

iP (x 7→ai). Therefore, t must be of

the form t = fq(t1, . . . , tnfq
). But by the minimal depth

assumption on t, we must have TΣ/E |= P (x 7→ tij),

1 ≤ j ≤ kfq . Which by the theorem’s hypothesis implies

TΣ/E |= P (x 7→ fq(t1, . . . , tnfq
)). That is, TΣ/E |= P (x 7→ t),

contradicting the assumption TΣ/E 6|= P (x 7→ t). q.e.d.

32

Need to Check Sufficient Completeness

All this is fine, but there is a pending issue. How do we

know that the declared subsignature of constructors is

correct? We need to check that it is sufficiently complete,

for example using the SCC tool.

Also, as discussed in the justification of the split rule, the

user may have overlooked giving enough equations for the

defined functions, and then it becomes impossible to

simplify every ground term to a constructor term.

Finally, a quick glance at our proof of the lemma involved in

justifying the soundness of the ind rule shows that the

reduction of proving P (x) to proving P (x 7→ t) for each

t ∈ TΩ,s works just the same under weaker assumptions than

(Σ, E) ground confluent, sort-decreasing, and terminating

with subsignature of constructors Ω.

33

Exercises

Ex.13.1 Generalize the proof justifying the soundness of the

split rule to a considerably weaker condition than

protecting. Specifically, show that the split rule is sound to

prove inductive properties about a module fmod(Σ, E)endfm

including BOOL as a submodule if and only if the

homomorphism

TΣ/E |BOOL : TBOOL −→ TΣ/E |BOOL

is surjective. Explain why, since true and false are the only

constructors of sort Bool, the above surjectivity property,

essential to be sure that an application of the split rule is

correct, can be automatically checked using the Maude

SCC tool under quite general assumptions on (Σ, E).

34

Exercises (II)

Ex.13.2 Generalize the proof justifying the soundness of the

ind rule to a considerably weaker condition. Specifically,

show that the ind rule is sound to prove inductive

properties about a module fmod(Σ, E)endfm if and only if the

structural induction scheme uses a subsignature Ω on the

same sorts S such that the unique homomorphism

TΣ/E |Ω : TΩ −→ TΣ,E |Ω

is surjective.

35

