José Meseguer

Computer Science Department
University of Illinois at Urbana-Champaign



Mathematical Proof of Associativity of Addition

We want to prove that the addition operation in the module

fmod NATURAL is
sort Natural .
op O : -> Natural [ctor] .
op s : Natural -> Natural [ctor] .
op _*_ : Natural Natural -> Natural .
vars N M : Natural .
eq N+ 0=N.
eq N + s(M) = s(N + M) .
endfm

satisfies the associativity property,

(VN,M,L) N+ (M + L) = (N + M) + L.



Mathematical Proof of Associativity of Addition (II)

We can prove the property by induction on L. That is, we
prove it for L = 0 (base case) and then assuming that it
holds for L, we prove it for s(L) (induction step).

Base Case: We need to show,

(VN,M) N+ (M + 0) = (N + M) + 0.

We can do this trivially, by simplification with the equation

eq N+ 0 =N .




Mathematical Proof of Associativity of Addition (II)

Induction Step: We think of L as a generic constant
(typically written n in textbooks) and assume that the
associativity equation (induction hypothesis (IH))

(VN,M) N + (M + L) = (N + M) + L.
holds for that constant. Then we try to prove the equation,

(VN,M) N + (M + s(L)) = (N + M) + s(L).

using the induction hypothesis. Again, we can do this by
simplification with the equations E in NAT, and the induction
hypothesis I H equation, since we have,



N+ M+ s(L)) —gN+sM+ L)
—sps(N+ (M+ L)) —rgs((N+M + L).

and
(N+ M + s(L) —gs((N + M + L).

g.e.d



Machine-Assisted Proof with Maude’'s ITP

Maude's I'TP is an inductive theorem prover supporting

proof by induction in Maude functional modules. It is a

program written entirely in Maude by Manuel Clavel and
Joe Hendix in which one can:

e load in Maude the functional module or modules one
wants to reason about

e |oad the file itp-tool.maude and then type loop
init-itp .
e enter named goal to be proved by the ITP enclosed in

parentheses using the goal command.

e give commands, corresponding to proof steps, to prove
that property, also enclosed in parentheses



Machine-Assisted Proof with Maude’s ITP (II)

For example, suppose that we want to automatically prove
the associativity of addition. We first load into Maude the
module, say,

fmod NATURAL is
sort Natural .
op O : -> Natural [ctor]
op s : Natural -> Natural [ctor]
op _+_ : Natural Natural -> Natural .
vars N M : Natural .
eq N+ 0 =N .
eq N + s(M) = s(N + M)

endfm

Then we load itp-tool.maude and type loop init-itp



Machine-Assisted Proof with Maude’s ITP (III)

We then enter our associativity goal by giving it a name
(assoc), mentioning the module in which it should be
proved (NATURAL) and making explicit the universal
quantification with the letter A and curly brackets notation.
Note the required use of “on-the-fly” variables; and the
generous use of parentheses to help the I'TP parser.

(goal assoc : NATURAL |- A{N:Natural ; M:Natural ; L:Natural}
(W+ M+L)) = (N +M +L)) .)

The ITP then echoes, giving this goal an additional label
ending (@0) to help the user keep track of where he/she is
as the proof process unfolds and other (sub-)goals are
generated.



label-sel: assoc@O

A{N:Natural ; M:Natural ; L:Natural}
N:Natural +(M:Natural + L:Natural) = (N:Natural + M:Natural)+ L:Natural

+++++++++



Machine-Assisted Proof with Maude’s ITP (IV)

We can then try to prove goal assoc@0 by induction on

L:Natural by giving the command (ind on L:Natural .)
The tool then generates two subgoals (one for the base
case, and another for the induction step). The current,
selected goal is labeled with -sel

label-sel: assoc@1.0

A{VO#0:Natural}
(A{N:Natural ; M:Naturall
N:Natural +(M:Natural + VO#0:Natural) =(N:Natural + M:Natural)+ VO#0:Natural)

10



==>
(A{N:Natural ; M:Natural}

N:Natural +(M:Natural + s(VO#0:Natural)) =(N:Natural + M:Natural)+ s(VO#0:Natura
+++++++++++++

11



Machine-Assisted Proof with Maude’s ITP (V)

We can then try prove the above ‘“base case” subgoal by
using the ITP’'s auto tactic that —after turning the
variables into constants by the constants lemma (more on
this later) and doing implication elimination if necessary—
tries to simplify the goal by applying equations in the
module, until hopefully reaching an identity. This tactic
succeeds, leaving the second goal.

Maude> (auto .)

label-sel: assoc2.0

A{VO#0:Natural}
(A{N:Natural ; M:Natural}
N:Natural +(M:Natural + VO#0:Natural) =(N:Natural + M:Natural)+ VO#0:Natural)

12



(A{N:Natural ; M:Natural}

N:Natural +(M:Natural + s(VO#0:Natural)) =(N:Natural + M:Natural)+ s(VO#0:Natura
+++++++++++++

13



Machine-Assisted Proof with Maude’s ITP (VI)

We can likewise apply the auto tactic to the second goal,
thus proving the associativity theorem.

Maude> (auto .)

q.e.d

+++++++++++ b

Note that, in this case, both the constants lemma and
implication elimination had to be invoked by auto before

being able to simplify both sides of the conclusion using the
induction hypothesis.

14



List Induction

So far, we have only used natural number induction. What
about induction on other data structures? For example,
what about list induction? Consider, for example, the
following module defining a list append operator in terms of
a list “‘cons” operator _:_ for lists of natural numbers
importing the NAT predefined module.

fmod MY-LIST is protecting NAT .

sort List .

op nil : -> List [ctor]

op _:_ : Nat List -> List [ctor]

op append : List List -> List .

vars N M : Nat .

vars L L1 L2 L3 : List .

eq append(nil, L) = L .

eq append(N : L1, L2) = (N : append(L1, L2))

endfm

15



List Induction (II)

The nil constant and the *“cons’ operator _:_ are
constructors that play a role analogous to zero and
successor in NAT, and list “append” is the analogous of
number addition.

In fact, it is also associative, that is, the above module
satisfies the property,

(VL1,L2,L3) append (append(L1,L2),L3) = append(L1,append(L2,L3)).

16



List Induction (III)

The same scheme of proof used to prove associativity of
addition can be used here as well, changing zero by nil,
and successor by the ‘cons’ operator _:_.

That is, if we want to do induction on L1, we must prove
the base case for nil,

(VL2,L3) append(append(nil,L2),L3) = append(nil,append(L2,L3)).

which follows trivially by simplification with the equation

eq append(nil, L) =L .

17



List Induction (IV)

And then we must prove the induction step by assuming
that, considering L1 as a generic list constant, we have the
induction hypothesis equation,

(VL2,L3) append(append(L1,L2),L3) = append(L1,append(L2,L3)).

that we try to use, along with the equations in the MY-LIST
module, to prove by simplification the equation

(VL2,L3) append(append((N : L1),L2),L3) = append((N : L1),append(L2,L3)).

where N is a generic natural constant,

18



List Induction (V)

All this can again be done by hand, and it works. But it can
be automated using the Maude ITP prover by:

e an induction step on L, which generates two subgoals,
followed by

e auto Steps for the subgoals (which succeed)

After initializing the I'TP and entering the MY-LIST module,
we enter the main goal to the I'TP. The screenshot shows
the result of the ind step followed by the two auto steps,
which complete the proof.

19



List Induction (VI)

Maude> (goal append-assoc
MY-LIST |- A{L1:List ; L2:List ; L3:List}
((append (L1, append(L2, L3)))
= (append(append(L1, L2), L3))) .)

A{L1:List ; L2:List ; L3:List}
append(L1:List,append(L2:List,L3:List)) = append(append(L1:List,L2:List),L3:List
I R R

Maude> (ind on L1:List .)

A{L2:List ; L3:List}

20



append(nil,append(L2:List,L3:List)) = append(append(nil,L2:List),L3:List)

A{VO#0:Nat ; VO#1:List}

(A{L2:List ; L3:List} append(VO#1:List,append(L2:List,L3:List)) =
append (append (VO#1:List,L2:List), L3:List))

(A{L2:List ; L3:List} append(VO#0:Nat
VO#1:List,append(L2:List,L3:List)) =

append (append (VO#0:Nat : VO#1:List,L2:List),L3:List))
R R E s o o S S S

Maude> (auto .)

A{VO#0:Nat ; VO#1:List}
(A{L2:List ; L3:List} append(VO#1:List,append(L2:List,L3:List)) =

21



append (append (VO#1:List,L2:List), L3:List))

(A{L2:List ; L3:List}

append (VO#0:Nat : VO#1:List,append(L2:List,L3:List))
append (append (VO#0:Nat : VO#1:List,L2:List),L3:List))
s o S S S

Maude> (auto .)

q.e.d

+++++++++

22



Using Lemmas

Life is not always as easy as proving associativity of
addition or of list append. Often, attempts at simplification
using the auto tactic do not succeed. However, they
suggest lemmas to be proved. Consider the following goal
of proving commutativity of addition in our NATURAL module:

Maude> (goal comm : NATURAL |- A{N:Natural ; M:Natural}
((N+M =M™+ N) .)

label-sel: comm@O

A{N:Natural ; M:Natural} N:Natural + M:Natural = M:Natural + N:Natural
+++++++++

23



Using Lemmas (II)

We can try to prove it by induction on M:Nat

Maude> (ind on M:Natural .)

label-sel: comm@1.0

label: comm@2.0

A{VO#0:Natural} (A{N:Natural}
N:Natural + VO#0:Natural = VO#0:Natural + N:Natural)

(A{N:Natural} N:Natural + s(VO#0:Natural) = s(VO#0:Natural)+ N:Natural)
++++++++++

24



Using Lemmas (III)

When we apply the auto tactic to this first goal we get,

Maude> (auto .)

label-sel: comm@1.0

Nx*Natural = 0 + N*Natural
++++++++++++

25



Using Lemmas (1V)

What we can do is to assume the unsimplified equation
yvielded by auto as a lemma in the proof of our main goal.
We can do this by giving this lemma a label and adding it
to the module of goal comm@1.0 as follows:

Maude> (lem O-comm : A{N:Naturall}((O0O + N) = (N)) .)

N*Natural = 0 + NxNatural

26



A{VO#0:Natural} (A{N:Natural}
N:Natural + VO#0:Natural = VO#0:Natural + N:Natural)

(A{N:Natural} N:Natural + s(VO#0:Natural) = s(VO#0:Natural)+ N:Natural)
+++++++++++++

27



Using Lemmas (V)

Adding this lemmma creates a new goal 0-comm@0, that is, a
new proof obligation that we need to discharge. We can do
so by proving the lemma by induction on N:Natural, using
the auto tactic to eliminate the two generated subgoals,
which brings us back to the original unproved subgoal:

Maude> (ind on N:Natural .)

A{Vi#0:Natural}

28



0 + Vi#0:Natural = V1i#0:Natural

0 + s(Vi#0:Natural) = s(Vi#0:Natural)

label: comm@1.0

N*Natural = 0 + NxNatural

label: comm@2.0

A{VO#0:Natural}
(A{N:Natural} N:Natural + VO#0:Natural = VO#0:Natural + N:Natural)

(A{N:Natural} N:Natural + s(VO#0:Natural) = s(VO#0:Natural)+ N:Natural)
+++++++++++++

Maude> (auto .)

29



label-sel: O0-comm@2.0

A{Vi#0:Natural} 0 + V1i#0:Natural = V1#0:Natural

0 + s(Vi#0:Natural) = s(Vi#0:Natural)
++++++++++

Maude> (auto .)

label-sel: comm@1.0

NxNatural = 0 + Nx*Natural
+++++++++++++

30



Using Lemmas (VI)

Proving now our first original subgoal becomes automatic
(because of the lemma) but we are then faced with the

second original subgoal:

Maude> (auto .)

label-sel: comm@2.0

A{VO#0:Natural}
(A{N:Natural} N:Natural + VO#0:Natural = VO#0:Natural + N:Natural)

(A{N:Natural}
N:Natural + s(VO#0:Natural)

+++++++++

s (VO#0:Natural)+ N:Natural)

31



Using Lemmas (VII)

We can apply also the auto tactic to the remaining goal
comm@2.0, but, again, we get an unproved equality that we
can use as a suggestion for a new lemma.

Maude> (auto .)

label-sel: comm@2.0

s (VO#0xNatural + N*Natural) = s(VO#0xNatural)+ N*Natural
++++++++++

32



Using Lemmas (IX)

We can again enter and prove this lemma by induction on
N:Natural and two applications of the auto tactic, which
brings us back to our last unproved subgoal, which we can
discharge with a last auto command.

Maude> (lem s-comm : A{N:Natural ; M:Natural}
((s(M) +N) = (s(M +N))) .)

label: comm@2.0

)
N\
<
o
H
o
*
=
)
ﬁ
c
=
)
|_l
+
=
*
=
)
ct
c
=
)
'—I
-/
Il
)
N\
<
(@)
H
o
*
=
)
r'.
c
=
)
'_l
-/
+
=
*
=
)
ct
c
=
)
|_l

label-sel: s—-comm@O

A{N:Natural ; M:Natural} s(M:Natural)+ N:Natural = s(M:Natural + N:Natural)

33



+++++++++

Maude> (ind on N:Natural .)
rewrites: 1740 in 60ms cpu (88ms real) (29000 rewrites/second)

label: comm@2.0

label-sel: s-comm@1.0

label: s-comm@2.0

A{Vi#0:Natural}
(A{M:Natural} s(M:Natural)+ V1i#0:Natural =
s(M:Natural + Vi#0:Natural))

34



(A{M:Natural} s(M:Natural)+ s(Vi#0:Natural) =
s(M:Natural + s(Vi#0:Natural)))
+++++++++++++

Maude> (auto .)

label-sel: s-comm@2.0

A{Vi#0:Natural}
(A{M:Natural} s(M:Natural)+ Vi#0:Natural = s(M:Natural +
V1i#0:Natural))

(A{M:Natural} s(M:Natural)+ s(Vi#0:Natural) =

s(M:Natural + s(Vi#0:Natural)))
++++++++++

Maude> (auto .)



s (VO#0xNatural + N*Natural) = s(VO#0xNatural)+ N*Natural
+++++++++++++

Maude> (auto .)

q.e.d

+++++++++

36



Caveats on the ITP Tool

The ITP tool is for the moment an experimental system,
with limited support for error messages. T herefore, if you
run into parsing troubles entering a goal or a command,
besides consuting the ITP Manual to make sure you did
things right, you may also use parentheses generously in all
goals, lemmas, and other ITP commands to help the ITP
parser.

37



Readings and EXxercises

Study the description of ITP commands in the ITP
documentation, which is included in the ITP software in the
course web page.

Look at, and play with, some examples of ITP proofs,
which are stored, together with the files for the ITP in the
course web page.

Try to prove: (1) associativity and commutativity of natural
number multiplication, and (2) the list equation rev(rev(L))
= L, for your favorite specifications of mutiplication, and of
the rev function that reverses a list, using the ITP tool.

338



