Program Verification: Lecture 4

Program Verification: Lecture 4

José Meseguer

University of lllinois at Urbana-Champaign (USA)

1/1

Program Verification: Lecture 4

Subterms
In a X-term f(t1,...,tn), the t1,...,t, are called its immediate
subterms, denoted t; < f(t1,...,t,), 1 <i < n. Note that the

inverse relation <~! = > is well-founded (see STAC 11.1).

A term u is called a subterm of t iff t >* u, and a proper subterm
of t iff t > u. Note that the relation > is also well-founded and
a strict order.

Given a term t € | Ty (x), we denote by vars(t) the set of its
variables, that is, vars(t) = {x e UX | t >* x}.

A term t may contain different occurrences of the same subterm wu.
For example, the subterm g(a) appears twice in the term

f(b, h(g(a)),g(a))-

Program Verification: Lecture 4

Context-Subterm Decomposition of a Term

To indicate where a subterm is located we can replace it by a hole,
a new constant [|, added at the kind level to the signature ¥,
marking where the subterm u was before we removed it.

For example, we can indicate the two places where g(a) occurs in

f(b, h(g(a)). g(a)) by f(b, h([]), g(a)) and f(b, h(g(a)),[]). A term
with a single occurrence of a hole is called a context.

We write C[] to denote a context. Given a context C|[] and a term
u, we can obtain a new term, denoted C[u], by replacing the hole
[| by the term u. For example, if C[] = f(b, h([]),g(a)) and

u = k(b,y), then Clu] = f(b, h(k(b,y)),g(a)).

Program Verification: Lecture 4

Context-Subterm Decomposition of a Term (1)

Of course, if C[] is the context obtained from a term t by placing a
hole [] were subterm u occurred, then we have the term identity

t = Clu].

That is, we can always decompose a term t into a context and a
chosen subterm, where if t = C[u], then the decomposition of t
into the context-subterm pair (C[], u) is succinctly indicated by the

more compact notation Cl[u].

For example, we have, among others, the following decompositions
of our term f(b, h(g(a)), g(a)):

f(b, h([g(a)]), g(a)) = f(b, [h(g(a))], &(a)) = [F(b, h(g(a)), &(a))]

where the last decomposition has an “empty context”].

Program Verification: Lecture 4

Equations and Equational Theories

Given a sensible order-sorted signature ¥ = ((S, <), F), a
Y-equation is an atomic formula t = t', where t,t' € |J Ty(x), and
where we require that t = t’ is well typed, in the sense that there
are sorts 5,5’ € S such that t € Ty(x)s, t' € Ty(x),s, and

[s] = [s'].

An equational theory is then a pair (X, E), with ¥ and order-sorted
signature, and E a set of X-equations.

In an equational theory (X, E) all equations t =t’ € E are
implicitly assumed to be universally quantified as

(Vx1:81,..,Xp:8p) t =1

with vars(t = t') = {x1 : s1,...,Xn : Sn}, Where, by definition,
vars(t = t') = vars(t) U vars(t').

Program Verification: Lecture 4

Equational Deduction: Replacing Equals by Equals

Equational deduction is the systematic replacement of equals by
equals using the given equations E.

For example, we may use ring theory equations such as:
(Dx+y=y+x (2)xxy=yxx3) (x+y)+z=x+(y+2),
() x+0=x,(5) xx1=x,(6) x*x(y+2z)=(x*xy)+(xx*2z), to
prove the polynomial equality y + (z+ (04 (1% x)) = (y + z) + x
by the following sequence of replaments of equals by equals:

(1) y+(z+[0+(1xx)]) = y+(z+[(15x)+0]) = y+(z+[Lxx]) =

y+@+xx1)) =+ (z+x)] =y +2) +x

where at each point the subterm where an equation is applied is
marked by the term decomposition.

Program Verification: Lecture 4

Equational Deduction: Replacing Equals by Equals (I1)

We can make the above proof of equality (1) more informative by
giving a name, say ALG, to the above set (1)—(6) of equations,
and indicating a proof step:

@ applying an equation from left to right by t — 4,6 t/,
@ a proof step from right to left by t <-4, t/, and
@ a proof step in either direction by t <3¢ t'.

With this notation we obtain the more informative proof:

y+(z+[0+(1*x)]) SALG y+(z+[(1*x)+0]) —ALG y+(z+[1*x]) ALG

y+(z+[x*1]) mac vy + (z+ x)] <arc (v + 2) + x.

Program Verification: Lecture 4

Term Rewriting

Certain equations, for example equations (3)—(6) in ALG, can be
applied from left to right as algebraic simplification rules, because
their righthand side is clearly simpler, so that applying them leads
to a simpler expressions.

Algebraic simplification produces a special type of equational
proofs, called algebraic simplification proofs, where equations are
always applied from left to right. Here is an algebraic simplification
proof with equations in ALG for a polynomial expression:

([x4+0]*(y+(z*1))+x" = are (x*(y+[z*1]))+x" —arc [x*(y+2)]+x —aLc

(e y) 4+ (xx2)) + X —=ace (xxy) + ((x x2) + X)

This process is called term rewriting, or term reduction.

Program Verification: Lecture 4

Rewrite Rules and Term Rewriting Systems

We can make term rewriting explicit by choosing and orientation
for an equation: we can orient an equation t = t’ from left to right
as a so-called rewrite rule t — t/, and from right to left as the
rewrite rule t' — t.

Definition

(Rewrite Rules and Term Rewiting Systems). Given a sensible
order-sorted signature ¥ = ((S, <), F), a X-rewrite rule is a
sequent t — t', where t,t’ € | Tx(x), and where we require that
the rule t — t’ is well typed, in the sense that there are sorts
s,s' € S such that t € Ty(x)s, t' € Ty(x),s, and [s] = [s'].

A term rewriting system is then a pair (X, R), with ¥ and
order-sorted signature, and R a set of ¥ -rewrite rules.

Program Verification: Lecture 4

10/1

The Rewrite Relation

Definition

Let ¥ = ((S, <), F) be a sensible, kind-complete signature, let

(X, R) be a term rewriting system, and let Y = {Ys}scs be an
S-indexed set of variables. Then an R-rewrite step is a pair (u, v),
denoted u —g v, such that u € Ts(v) and there is a rewrite rule
t — t' € R, a substitution 6 : vars(t — t') — Tx(y), and a term
decomposition u = C[tf] such that v = C[t'6], where, by
definition, vars(t — t') = vars(t) U vars(t').

Since X is kind-complete, if t — t' € R and u = C[tf] : [s], then
we must have v = C[t'f] : [s], that is, —g never produces
ill-formed terms.

We denote by —>E the transitive closure of —g, and by — the
reflexive-transitive closure of —p.

Program Verification: Lecture 4

Rewrite Proofs

A (X, R)-rewrite proof is, by definition, either:

o aterm t € |J Ty(y), witnessing a O-step rewrite t —% t, or

@ a sequence of R-rewrite steps of the form

to >R t1 >r to...th—1 7R tn

with n > 1, witnessing tg —>; th.

11/1

Program Verification: Lecture 4

The Equality Relation and Equational Proofs

The notion of an equational proof, that is, a sequence of steps of
replacement of equals by equals using equations E, is a trivial
instance of the notion of a rewrite proof.

Given an equational theory (X, E), all we need to do is to consider
proofs in the term rewriting system (X, ? U <E) where, by
definition:
° ? is the set of left-to-right orientations
?:{t—m’\t:t’eE}; and

<. . . .

@ E is the set of right-to-left orientations

= ’ ’
E={t—t|t=t eE}

12/1

Program Verification: Lecture 4

13/1

The Equality Relation and Equational Proofs (II)

Definition

Given an equational theory (X, E) with X kind-complete and with
nonempty sorts, an E-equality step is, by definition, a

(E U E)-rewrite step u —(BUE) v denoted u <>g v, where

u,v el Ts(y) for some variables Y.

<—>J,:f denotes the transitive closure of «<+£; and <+ the
reflexive-transitive closure of <»g. <+¢ is called the E-equality
relation, and is often abbreviated to —fg. It is also called the
relation of equality modulo E.

A (X, E)-equality proof is by, definition, either a term t € (J Tx(y),
witnessing a O-step E-equality t <+ t, or a sequence of E-equality
steps of the form ty <>g t1 <> to ... th_1 <>F ty, With n > 1,
witnessing tg <—>J,:C th.

Program Verification: Lecture 4

Term Rewriting Modulo Axioms

Certain equations are intrinsically problematic for term rewriting.
For example, the commutativity equation x +y =y 4+ x is
intrinsically problematic for rewriting because:

@ we do not obtain a simpler term, but only a “mirror image” of

the original term; for example, (x * 7) + (0 * y) is rewritten to
(0*y)+ (x*7); and

@ even worse, we can easily loop when applying this equation, as
in the infinite, alternating sequence

(X*7)+(0*y) —ALG (O*y)+(x*7) —ALG (X*7)+(0*y) —ALG - -

The solution to this problem is to build in certain, commonly

occurring equational axioms, such as the above commutativity
o axioms, so that rewriting takes place modulo such axioms.

Program Verification: Lecture 4

15/1

Term Rewriting Modulo Axioms (I1)

For example, we can decompose our equations ALG into a built-in,
commutative part C = {x+y =y + x,x*y = y * x} and the rest,
say, ALGy ={(x+y)+z=x+(y+2),x+0=x,x*x1=
x,x*(y +2z)=(x*y)+ (x*2z)}, and then rewrite with the
equations in ALGg from left to right applying them, not just to the
given term t, but to any other term t’ which is provably equal to t
by the equations C.

This, more powerful rewrite relation is called rewriting modulo C,
and is denoted — 51 ,/c- For example, we can simplify the
expression ((0+x)* ((1xy)+7))+zto (x*xy)+ ((x*7)+2z)in
Just four steps with — 4,6,/ c as follows:

((O+x)((Lxy)+7))+2 = argy/c Cx((Ley)+T7))+2z = arcy/c (x(y+7))+2 —arq/c
(Ocxy) +(x* 7)) +2 =a/c (xxy) + ((xx7) +2)

Program Verification: Lecture 4

16/1

Term Rewriting Modulo Axioms (I11)

But why stopping with commutativity? How about associativity?
An associativity (A) equation such as (x+y)+z = x+ (y + z) has
no looping problems; but parentheses around associative operators
are a nuisance and can block the application of equations.

For example, we can simplify to O the term

((x+y)+2z)+ —(y + (z+ x)) in one step of rewriting modulo
the following set AC of associativity and commutativity axioms for
_+_and _x_, AC={x+y=y+x,xxy=yxx,(x+y)+z=
x+(y+z),(x*xy)*xz=xx(y*z)}, using the single equation
ALG; = {x+ —x = 0} oriented as the rule x + —x — 0.

((x+y)+2)+ —(y +(z+x)) —aLc/ac 0.
That is, when rewriting modulo AC: (i) the order of the arguments
does not matter (because of commutativity, C), and (ii)
parentheses do not matter (because of associativity, A).

Program Verification: Lecture 4

Rewrite Theories

17/1

Likewise, we could also build in the unit element axioms
U={x+0=x,x*1=x}. Or any combination of C, and/or A,
and/or U axioms could be built in.

In fact, the idea of building in a set B of equational axioms, so
that we rewrite with a set of rules R modulo B, is entirely general,
and is associated to the notion of a rewrite theory.

Definition

Let 2 be a sensible order-sorted signature. A rewrite theory is a
triple (X, B, R), where B is a set of X-equations, and R is a set of
> -rewrite rules.

Rewriting with R modulo B can then be formalized as follows.

Program Verification: Lecture 4

Rewriting Modulo B

Definition

Let (X, B, R) be a rewrite theory such that X is sensible and
kind-complete. Then an R-rewrite step modulo B is a pair
(u,v) € Té(y), denoted u —g/p v, such that there are terms

u, v e Ts(y) with u =g u, v =gV, and v/ =g v, that is, we
have u =g v/ —g v/ =g v.

We call —g/p the one-step R-rewrite relation modulo B, and
denote by —>%/B the relation =g, called the O-step R-rewrite

+
R/B

by —>",‘?/B the relation —>JRC/B U =g.

relation modulo B, by — the transitive closure of —¢/p, and

18/1

Program Verification: Lecture 4

Rewrite Proofs Modulo B

An R-rewrite proof modulo B is either:

@ a pair (u,v) € T%(Y)' with u =g v, witnessing a 0-step
R-rewrite modulo B, or

@ a sequence of R-rewrite steps modulo B of the form

Yo 7R/B V1 —7R/B V2---VYn—1—"R/B Vn;

n > 1, witnessing v _>R/B V.

19/1

Program Verification: Lecture 4

20/1

Examples of Equational Simplification Modulo B

Lists modulo associativity and identity, with membership:

fmod LIST-AID is
protecting NAT .
sort List .
subsort Nat < List .
op nil : -> List [ctor]

op _;_ : List List -> List [assoc id: nil ctor]
op _in_ : Nat List -> Bool .
var N : Nat . vars L L’ : List .
eq NinL ; N ; L’ = true .
eq N in L = false [owise]
endfm

reduce in LIST-AID : 7 in 3 ; 4 ; 9 .
result Bool: false

reduce in LIST-AID : 7 in 4 ; 3 ; 7 .
result Bool: true

Program Verification: Lecture 4

Examples of Equational Simplification Modulo B (II)

21/1

Lists modulo associativity with membership. More patterns are
need.

fmod LIST-A is

protecting NAT . sort List . subsort Nat < List .
op nil : -> List [ctor]
op _;_ : List List -> List [assoc ctor]
op _in_ : Nat List -> Bool .
var N : Nat . vars L L’ : List .
eq nil ; L =1L .
eq L ; nil =1L .
eq N in N = true .
eq N in N ; L = true .
eq NinL ; N = true .
eq NinL ; N ; L’ = true .
eq N in L = false [owise]
endfm

reduce in LIST-A : 7 in 4 ; 3 ; 7 .
result Bool: true

Program Verification: Lecture 4

Examples of Equational Simplification Modulo B (lII)

Multisets modulo associativity, commutativity, and identity.

fmod MSET-ACU is
protecting NAT .
sort MSet .
subsort Nat < MSet .
op nil : -> MSet [ctor]
op _;_ : MSet MSet -> MSet [assoc comm id: nil ctor]
op _in_ : Nat MSet -> Bool .
var N : Nat . var S : MSet .

eq N in N ; S = true .
eq N in S = false [owise]
endfm

reduce in MSET-ACID : 7 in 3 ; 4 ; 9 .
result Bool: false

reduce in MSET-ACID : 7 in 4 ; 3 ; 7 .
result Bool: true

22/1

Program Verification: Lecture 4

23/1

Examples of Equational Simplification Modulo B (IV)

Multisets modulo associativity and commutativity: more patterns
needed.

fmod MSET-AC is
protecting NAT .

sort MSet . subsort Nat < MSet .
op nil : -> MSet [ctor]
op _;_ : MSet MSet -> MSet [assoc comm ctor]

op _in_ : Nat MSet -> Bool .
var N : Nat . var S : MSet .
eq nil ; S =895 .

eq N in N = true .

eq N in N ; S = true .

eq N in S = false [owise]
endfm

reduce in MSET-AC : 7 in 3 ; 4 ; 9 .
result Bool: false

reduce in MSET-AC : 7 in 4 ; 3 ; 7 .
result Bool: true

Program Verification: Lecture 4

Examples of Equational Simplification Modulo B (V)

Sets of natural numbers using identity and idempotency equations.

fmod NAT-SET is protecting NAT .
sort NatSet .
subsort Nat < NatSet .
op mt : -> NatSet [ctor]

op _ _ : NatSet NatSet -> NatSet [ctor assoc comm] . *** set union

op _/\ _ : NatSet NatSet -> NatSet [assoc comm] . **%* intersection
vars X Y : NatSet . var N : Nat .

eqmt X =X . **x identity

eq X X =X . **x idempotency

eq N /\N=N.

eq N /\ (NX) =N .

eq NX) /AN (NY) =NX/\Y)

eq X /\ Y = mt [owise]
endfm
Maude> red (1 2 345) /\ (34567)
result NatSet: 3 4 5

24/1

Program Verification: Lecture 4

Caveats on Equational Simplification Modulo B

Equational simplification modulo identity is trickier. For example,
the innocent-looking idempotency equation in

fmod NAT-SET’ is protecting NAT .
sort NatSet .
subsort Nat < NatSet .
op mt : —> NatSet [ctor]

op _ _ : NatSet NatSet -> NatSet [ctor assoc comm id: mt]
var X : NatSet .
eq XX =X.

endfm

is nonterminating, since we have,

mt =pcymtmt —gpmt =pcymtmt —>¢

25/1

Program Verification: Lecture 4

Caveats on Equational Simplification Modulo B (1)

Nontermination can be avoided by giving instead a more careful
equation, where we restrict idempotency to pairs of elements (yet,
with the same effect, sice this ensures that all repeated elements
will be eliminated) by means of the (now terminating) equation,

var N : Nat
eq NN =N .

Another alternative is to declare:

sort NatSet NeNatSet .

subsort Nat < NeNatSet < NatSet

op mt : -> NatSet [ctor]

op _ _ : NatSet NatSet -> NatSet [ctor assoc comm id: mt.
op _ _ : NeNatSet NeNatSet -> NeNatSet [ctor assoc comm :
var X : NeNatSet

eq X X =X .

26/1

Program Verification: Lecture 4

Readings

All the theoretical aspects of the material presented in this lecture
are covered in detail in STAC 13.1 and 13.2.

27/1

