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Algebras

An (unsorted, many-sorted, or order-sorted) signature Σ is

just syntax: provides the symbols for a language; but what

is that language talking about? what is its semantics?

It is obviously talking about algebras, which are the

mathematical models in which we interpret the syntax of Σ,

giving it concrete meaning.

Unsorted algebras are the simplest example: children

become familiar with them from the early awakenings of

reason. They consist of a set of data elements, and various

chosen constants among those elements, and operations on

such data.
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Algebras (II)

For example, for Σ the unsorted signature of the module

NAT-MIXFIX we can define many different algebras, such as

the following:

1. IN, the algebra of natural numbers in whatever notation

we wish (Peano, binary, base 10, etc.) with 0

interpreted as the zero element, s interpreted as

successor, and + and * interpreted as natural number

addition and multiplication.

2. INk, the algebra of residue classes modulo k, for k a

nonzero natural number. This is a finite algebra whose

set of elements can be represented as the set

{0, . . . , k − 1}. We interpret 0 as 0, and for the other
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operations we perform them in IN and then take the

residue modulo k. For example, in IN7 we have 6+ 6 = 5.

3. Z, the algebra of the integers, with 0 interpreted as the

zero element, s interpreted as successor, and + and *

interpreted as integer addition and multiplication.

4. Q, the algebra of the rational numbers, with 0

interpreted as the zero element, s interpreted as adding

1, and + and * interpreted as rational addition and

multiplication.

5. R, the algebra of the real numbers, with 0 interpreted

as the zero element, s interpreted as adding 1, and +

and * interpreted as real number addition and

multiplication.

6. C, the algebra of the complex numbers, with 0
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interpreted as the zero element, s interpreted as adding

1, and + and * interpreted as complex number

addition and multiplication.

Similarly, for Σ the unsorted signature:

sort Boolean .

ops true false : -> Boolean .

op not : Boolean -> Boolean .

ops and or : Boolean Boolean -> Boolean .

we can define many algebras, including the following:

1. B the standard Boolean algebra, with just two

elements, say {0, 1}, with true interpreted as 1 and

false as 0 and with the standard interpretation of not,

and, and or as Boolean operations.
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2. (powersets) for X any set, we can view its powerset

P(X) as a Σ-algebra for this signature, with true

interpreted as X, false as ∅, not interpreted as

complement (that is, not(Y ) = X − Y ), and with and,

and or interpreted, respectively, as set intersection ∩

and set union ∪.

3. (Boolean predicates on a set) for X any set, we can

endow the function set [X→B] with a Σ-algebra

structure for this signature, with true interpreted as the

constant function 1, false as the constant function 0,

not(f) interpreted as the function not(f)(x) = notB(f(x)),

where notB is the intepretation in the standard Boolean

algebra B above, and with fand g and for g interpreted,

respectively, as the functions:

(fand g)(x) = f(x)andBg(x), (for g)(x) = f(x)orBg(x).
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Note that, up to a slight change of representation

(viewing a predicate as a subset or, alternatively, as a

Boolean-valued function) for any set X the algebras

P(X) and [X→B] are essentially the same algebra, that

is, they are isomorphic, a notion that will be further

explained later in the course.

4. (Fuzzy truth values) The set of data elements is the

real interval [0, 1]. We interpret true as 1, false as 0,

not(x) = 1− x, and as minimum, and or as maximum.
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Definition of Unsorted Algebras

For Σ an unsorted signature Σ = ({s}, F ), an unsorted

Σ-algebra is a pair A = (A, A), where A is a set, specifying

the data elements in the algebra, and A : f 7→ fA an

interpretation function that maps:

• each constant a :−→ s in F to an element aA ∈ A

• each n-ary function symbol f : s n. . . s −→ s in F to a

function fA : An −→ A.
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Definition of Many-Sorted Algebras

Similarly, for Σ = (S, F ) a many-sorted signature, a

many-sorted Σ-algebra is a pair A = (A, A), with

A = {As}s∈S an S-indexed family of sets, specifying the data

elements for each sort s ∈ S, and A : f 7→ fA an

interpretation function that maps:

• each constant a :−→ s in F to an element aA ∈ As

• each function symbol f : s1 . . . sn −→ s in F to a function

fA : As1 × . . .× Asn −→ As.

Notation: if w = s1 . . . sn, we write Aw = As1 × . . .×Asn .
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Examples of Many-Sorted Algebras

For Σ the signature of the module NAT-LIST we can define

several algebras:

1. (Strings of naturals). We interpret the sort Natural as

the set IN of natural numbers, and the sort List as the

set of strings IN∗. The interpretation function for the

constants and operations is then as follows: (i) all

operations in the submodule NAT-MIXFIX are intepreted

as the algebra IN of natural numbers; (ii) nil is

interpreted as the empty string; (iii) . is interpreted as

the function that concatenates a natural number on

the left of a string; and (iv) length is interpreted as the

function measuring the length of a string.

2. (Sets of naturals). We interpret the sort Natural as the

set IN of natural numbers, and the sort List as the set
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Pfin(IN) of finite subsets of IN. The interpretation

function for the constants and operations is then as

follows: (i) all operations in the submodule NAT-MIXFIX

are intepreted as the algebra IN of natural numbers; (ii)

nil is interpreted as the empty set ∅; (iii) . is

interpreted as the function inserting a natural number

on a set of naturals; and (iv) length is interpreted as

the cardinality function.

For another series of examples, consider the many-sorted

signature Σ in Picture 3.1. The following are then examples

of Σ-algebras:

1. (n-dimensional rational, real, and complex vector

spaces). The sort Scalar is interpreted, respectively, by

Q, R, C; and the sort Vector by, respectively, Qn, Rn,

Cn. The operations of sort Scalar are interpreted on,
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repectively, Q, R, and C, exactly as in the signature of

NAT-MIXFIX as already explained. The only new

constant now is 1, which is intepreted precisely as the

number 1 in all cases. Vector addition is intepreted in

all three cases in the usual way:

(x1, . . . , xn) + (y1, . . . , yn) = (x1 + y1, . . . , xn + yn)

The constant ~0 is interpreted as the zero vector

(0, n. . ., 0). The operation symbol . is intepreted by the

rule: λ.(x1, . . . , xn) = (λ ∗ x1, . . . , λ ∗ xn).

2. (n-dimensional integer modules). Exactly as above, but

using Z as scalars, and Zn as vectors.

3. (n-dimensional natural semi-modules). Exactly as

above, but using IN as scalars, and INn as vectors.
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4. (n-dimensional natural-modulo-k semi-modules).

Exactly as above, but using INk as scalars, and INn
k as

vectors.

5. (n-dimensional natural-modulo-k semi-modules with

natural scalars). Use IN as scalars, and INn
k as vectors.

6. We can also use a smaller algebra for scalars. For

example, we can choose Cn as vectors, and either R,

Q, Z, or IN as scalars. Likewise, we can use Rn as

vectors, and either Q, Z, or IN as scalars. Similarly, we

can use Qn as vectors, and either Z, or IN as scalars.

Finally, we can use Zn as vectors, and IN as scalars.

7. (Fuzzy (sub-)sets). A subset Y ⊆ X can be

characterized a Boolean-valued predicate pY : X −→ B,

with pY (x) = if x ∈ Y then 1 else 0 fi. By definition, a
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fuzzy subset of X is a function Z : X −→ [0, 1]. Z is a

“subset with uncertainty” about which elements belong

to it, so that its boundaries become “fuzzy” (see

Picture 3.2). The set of fuzzy subsets of X is

[X→[0, 1]]. We can define a Σ-algebra by choosing

[X→[0, 1]] as the interpretation of the Vector sort, wih

vector addition interpreted as union of fuzzy sets,

where, by definition, (Z ∪ U)(x) = max(Z(x), U(x)), and ~0

interpreted as the empty fuzzy set (the constantly zero

function). For the scalars we choose the interval [0.1]

with 0 interpreted as 0, 1 as 1, + as maximum, and

∗ as minimum. Scalar multiplication is defined by the

rule: (λ.Z)(x) = min(λ, Z(x)). Alternatively, we could

instead define a different scalar multiplication by:

(λ.Z)(x) = λ ∗ Z(x); this would give us a different

Σ-algebra structure on fuzzy sets.
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Definition of Order-Sorted Algebras

Given an order-sorted signature Σ = ((S,<), F ) an

order-sorted Σ-algebra is defined as a many-sorted

(S, F )-algebra A = (A, A) such that:

• In A = {As}s∈S, if s < s′ then As ⊆ As′

• if f is subsort overloaded, so that we have, f : w −→ s,

and f : w′ −→ s′, with w and w′ strings of equal length,

and with w ≡≤ w′ and s ≡≤ s′, then:

◦ if w = w′ = nil, then f is a constant and we have

f
nil,s
A = f

nil,s′

A (subsort overloaded constants

coincide)

◦ otherwise, if (a1, . . . , an) ∈ Aw ∩Aw′

, then

f
w,s
A (a1, . . . , an) = f

w′,s′

A (a1, . . . , an) (subsort overloaded

operations agree)
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Examples of Order-Sorted Algebras

For Σ the signature of NAT-LIST-II we can define, among

others, two different order-sorted algebra structures:

1. Interpret the sort NzNatural as IN•, Natural as IN, s, p,

and + in the usual way, NeList as IN+, List as IN∗,

nil as the empty string, . as left concatenation with a

natural, and first, rest and length in the usual way.

2. We can instead interpret both NzNatural and Natural as

Z, s, p, and + as those functions extended to all

integers, NeList as Z+, List as Z∗, nil is as the empty

string, . as left concatenation with an integer, and

first, rest and length in the usual way.
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Term Algebras

An obvious example of an order-sorted Σ-algebra is the

term algebra TΣ = (TΣ, TΣ
), where the family TΣ = {TΣ,s}s∈S

and its operations are mutually defined by:

• for each a : nil −→ s in Σ, aTΣ
= a ∈ TΣ,s

• for each f : w −→ s in Σ, with w = s1 . . . sn, n > 0, the

function fTΣ
: TΣ,s1 × . . .× TΣ,sn −→ TΣ,s maps the tuple

(t1, . . . , tn) ∈ Tw
Σ to the expression (called a term)

f(t1, . . . , tn) ∈ TΣ,s

• if s < s′, then TΣ,s ⊆ TΣ,s′
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Examples of Terms for the NATURAL Specification

TNATURAL,NzNatural =

{s 0, s s 0, s s s 0, s p s 0, s(0 + s 0), . . .}

TNATURAL,Natural =

TNATURAL,NzNatural ∪ {0, p s 0, (0 + 0), . . .}.

Although the mathematical definition of terms uses prefix

notation, Maude allows general mixfix notation. This is just

a (very useful) parsing and pretty-printing facility. If one

insists (by giving the command set print mixfix off .)

Maude can print even mixfix terms in prefix notation. For

example, s ( + (0,s (0))) instead of s(0 + s 0).
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Sensible Signatures

A signature Σ can be intrinsically ambiguous, so that a term

may denote two completely different things. Consider for

example the following signature:

sorts A B C D .

op a : -> A .

op f : A -> B .

op f : A -> C .

op g : B -> D .

op g : C -> D .

then the term g(f(a)) is an ambiguous term of sort D

denoting two completely different things.

A very mild condition ruling this out, yet allowing ad-hoc

overloading, is the notion of a sensible signature, namely

one such that whenever we have f : w −→ s and f : w′ −→ s′,

with w,w′ of equal length, then w ≡≤ w′ ⇒ s ≡≤ s′.
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Sensible Signatures (II)

Lemma. If Σ is a sensible order-sorted signature, then for

any term t in TΣ we have,

t ∈ TΣ,s ∧ t ∈ TΣ,s′ ⇒ s ≡≤ s′

Proof: By induction on the depth of t.

We define the depth of a term as follows: constants have

depth 0, and terms of the form f(t1, . . . , tn) have depth

1 +max(depth(t1), . . . , depth(tn)).

For depth 0, t = a is a constant, and a ∈ TΣ,s iff there is

a : nil → s′′ in Σ with s′′ ≤ s. Similarly, if a ∈ TΣ,s′ there is

a : nil → s′′′ in Σ with s′′′ ≤ s′. By Σ sensible we have

s′′ ≡≤ s′′′, and therefore, s ≡≤ s′.
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Sensible Signatures (III)

Assuming the result true for depth ≤ n, let t = f(t1, . . . , tn)

have depth n+ 1. If we have t ∈ TΣ,s ∧ t ∈ TΣ,s′, this forces

the existence of f : w′′ −→ s′′ and f : w′′′ −→ s′′′, with s′′ ≤ s

and s′′′ ≤ s′ and such that (t1, . . . , tn) ∈ Tw′′

Σ ∩ Tw′′′

Σ .

By the induction hypothesis this forces w′′ ≡≤ w′′′. And by Σ

sensible this forces s′′ ≡≤ s′′′, and therefore, s ≡≤ s′. q.e.d.
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Variables

Note that in our definition of Σ-terms we only allowed

constants and terms built up from them by other operation

symbols, so-called ground terms. Therefore, terms with

variables, such as those appearing in the equations

vars N M : Natural .

eq N + 0 = N .

eq N + s M = s(N + M) .

do not seem to fall within our definition. What can we say

about such terms? First, note that N and M are variables in

the mathematical sense, not at all in the sense of variables

in an imperative language. Second, we can reduce the

notion of terms with variables to that of terms without

variables (ground terms) in an extended signature.
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A Sample Extended Signature

We can extend the signature of our above example by

adding the variables as additional constants to get the new

signature,

sort Natural .

op 0 : -> Natural .

op N : -> Natural .

op M : -> Natural .

op s_ : Natural -> Natural .

op _+_ : Natural Natural -> Natural .

in which a term such as s(N + M) is now a well-defined term

of sort Natural.
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The Extended Signature Σ(X)

The general way of extending a signature Σ = ((S,<), F )

with variables is as follows. We assume a family

X = {Xs}s∈S of sets of variables for the different sorts s ∈ S

in the signature Σ. Such that:

• variables of different sorts are different, i.e.,

Xs ∩Xs′ = ∅ if s 6= s′

• the variables in X are different from the constants in Σ,

i.e., (∪s∈SXs) ∩ {(a, nil, s) ∈ F | s ∈ S} = ∅.

Then we define the extended signature

Σ(X) = ((S,<), F (X)), where

F (X) = F ∪ {(x, nil, s) | x ∈ Xs ∧ s ∈ S}.
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The Term Algebra TΣ(X)

Therefore, Σ-terms with variables in X are the elements of

the term algebra TΣ(X) associated to the extended signature

Σ(X).

Note that if Σ is a sensible signature, then it is trivial to

check that Σ(X) is also, by construction, a sensible

signature. Therefore, all the results holding for ground

terms in sensible signatures do hold likewise for terms with

variables.
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Preregular Signatures

An order-sorted signature Σ = ((S,<), F ) is called preregular

iff for each Σ-term t (possibly with variables), the set of

sorts

{s ∈ S | t : s}

has a least element in the poset (S,<) called the least sort

of t and denoted ls(t).

Maude automatically checks the preregularity of the

signature Σ of any module entered by the user and issues a

warning if Σ is not preregular.
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Indexed Families of Functions

Given two S-indexed families of sets A = {As}, and

B = {Bs}, what is the natural generalization of the concept

of function from sets to S-indexed sets?

It is the notion of an S-indexed family of functions (or

S-indexed function) f = {fs : As −→ Bs}s∈S, where for each

s ∈ S fs : As −→ Bs is a function in the ordinary sense. We

then write f : A −→ B.

Mathematically, S-indexed functions f = {fs : As −→ Bs}s∈S

can be described as ordinary functions f : S −→ U into the

set U =
⋃

s∈S [As→Bs], such that for each s ∈ S we have

f(s) ∈ [As→Bs].
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Substitutions

Given an order-sorted signature Σ with set of sorts S and

given S-indexed families of variables X = {Xs}s∈S, and

Y = {Ys}s∈S, a substitution is an S-indexed family of

functions

θ : X −→ TΣ(Y )

For example, for Σ an unsorted signature of arithmetic

expressions, X = {x, y, z}, and Y = {x, y, z, x′, y′, z′}, a

particular θ can be the assignment:

• x 7→ (x+ y′) ∗ z

• y 7→ (x′ − y′)

• z 7→ z′ ∗ z′
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Substitutions Extend to Terms

If Σ is a sensible signature, a substitution

θ : X −→ TΣ(Y )

extends in a unique way to an S-indexed function

θ : TΣ(X) −→ TΣ(Y )

defined recursively by:

• xθ = θ(x)

• f(t1, . . . , tn)θ = f(t1θ, . . . , tnθ)

For example, for the above θ we have,

x+ (y ∗ z)θ = ((x+ y′) ∗ z) + ((x′ − y′) ∗ (z′ ∗ z′)).
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Equations

What is the general notion of equation in the general

setting of Σ-algebras that we are considering?

Given a signature Σ, we can define a Σ-equation as an

expression of the form

t = t′

where, for some variables X, t and t′ are terms t ∈ TΣ(X)s

and t′ ∈ TΣ(X)
s
′
such that the sorts s, s′ are related in the

subsort ordering, i.e., s ≡≤ s′.

Given the above equation, we can universally quantify all its

variables and get the sentence

(∀X) t = t′
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Some Common Mistakes

• not ending declarations for sorts, operators, etc. with a

space followed by a period, e.g.,

sort Natural

op 0 : -> Natural.

op s : Natural -> Natural

• not putting enough parentheses to disambiguate

expressions, e.g., p s s 0 + 0

• not leaving spaces between a mixfix operator and its

arguments, e.g., 0+0
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Getting to Use Maude

You should begin writing functional modules of your own

with syntax as exemplified in the above examples. You

should write such modules in files using Emacs.

Download Maude from the Maude web page

http://maude.cs.uiuc.edu. Read Setion 1.7 of “All About

Maude” for suggestions on how beginners can become

acquainted with Maude as soon as possible.

To enter a module into Maude can use cut and paste, or

the “in filename” command inside Maude, and can change

or list directories using Unix commands.
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Readings and Exercises

Before the next lecture try to:

• Follow the reading suggestions for beginners in 1.7 of

“All About Maude,” and try to get as deep as possible

this way into Chapter 4.

• Continue playing with Maude. Define other functions

on commonly used data types. For example, define

binary trees that have natural numbers in their leaves,

and define three functions: (i) tree reverse, (ii) max

and min (give the biggest, resp. smallest, number

stored in the tree), and (iii) insert, which inserts a

number in the tree, so that numbers to its left in the

tree will be smaller.
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Readings and Exercises (II)

Ex.3.1. Denote by C1, . . . Cn, . . . the different connected

components of the poset of sorts in a signature Σ. Also,

given a sort s, denote by C(s) its connected component.

Then, given a Σ-algebra A = (A, A) and a connected

component C define AC = ∪s∈CAs.

Prove that, given an operator f : s1 . . . sn −→ s in Σ, all the

other subsort-overloaded operators related to it “glue

together” into a single partial function

fA : AC(s1) × . . .× AC(sn) −→ AC(s).

Therefore, the qualifications f
w,s
A are in some sense

unnecessary.
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Readings and Exercises (III)

Ex.3.2. Let Σ be the signature:

sort Natural .

op 0 : -> Natural .

op s : Natural -> Natural .

And let A = {a, b, c}. How many different Σ-algebra

structures can be defined on the set A? That is, how many

different Σ-algebras of the form A = (A, A) are there?

(Explain, and also state the total number of such algebras).

Can you justify why the number comes out that way? For

example, can your supposed justification predict (without

having to explicitly construct them) exactly how many such

algebras will there be on A if we add to the above Σ a

binary function, say,

op _+_ : Natural Natural -> Natural .
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