Program Verification: Lecture 10

José Meseguer

Computer Science Department
University of Illinois at Urbana-Champaign

More on $\Sigma(X)$-Algebras

Recall how we formalized the evaluation of integer arithmetic expressions with memory $m: X \rightarrow \mathbf{Z}$ as the unique $\Sigma(X)$-homomorphism:

$$
-(\mathcal{Z}, m): \mathcal{T}_{\Sigma(X)} \rightarrow(\mathcal{Z}, m)
$$

where (\mathcal{Z}, m) extends the integer Σ-algebra $\mathcal{Z}=\left(\mathbf{Z},{ }_{-\mathcal{Z}}\right)$ by interpreting the constants X as the memory map $m: X \rightarrow \mathbf{Z}$.

This situation is completely general: For any signature Σ and any Σ-algebra $\mathcal{A}=(A,-\mathcal{Z})$, given an assignment, i.e., a "memory map," $a: X \rightarrow A$, the evaluation of $\Sigma(X)$-expressions in \mathcal{A} is the unique $\Sigma(X)$-homomorphism:

$$
-(\mathcal{A}, a): \mathcal{T}_{\Sigma(X)} \rightarrow(\mathcal{A}, a)
$$

Abbreviated Notation: ${ }_{-(\mathcal{A}, a)}={ }_{_} a_{\mathcal{A}}$.

More $\Sigma(X)$-Algebras (II)

We can summarize this situation as the following:
Fact 1: Any pair (\mathcal{A}, a) with $\mathcal{A}=\left(A, \mathcal{L}_{\mathcal{A}}\right)$ a Σ-algebra and $a: X \rightarrow A$ an assignment defines a $\Sigma(X)$-algebra (\mathcal{A}, a).

Q: Are all $\Sigma(X)$-algebras of this form?
A: Yes! We just need to recall the definition of an order-sorted Σ-algebra in Lecture 3:

For $\Sigma=((S, \leq), F))$ a signature, Σ-algebra $\mathcal{A}=\left(A,{ }_{-\mathcal{A}}\right)$ is just a pair with: (i) A an S-sorted set, and (ii) $-\mathcal{A}$ a function $\mathcal{- \mathcal { A }}: f \mapsto f_{\mathcal{A}}$ interpreting each constant $c: \rightarrow s$ as an element $c_{\mathcal{A}} \in A_{s}$, and each symbol $f: w \rightarrow s$ in Σ as a function $f_{\mathcal{A}} \in\left[A^{w} \rightarrow A_{s}\right]$, with f overloaded agreeing on common data.

More $\Sigma(X)$-Algebras (III)

Therefore, if $\Sigma=((S, \leq), F))$, then $\Sigma(X)=((S, \leq), F \uplus X))$, where each new constant $x \in X_{s}$ has typing $x: \rightarrow s$, and \uplus denotes disjoint union of sets.

Recall from STACS that if sets U and V are disjoint, any function $h: U \uplus V \rightarrow W$ decomposes uniquely as a pair $\left(\left.h\right|_{U}: U \rightarrow W,\left.h\right|_{V}: V \rightarrow W\right)$ of its restrictions to U and V.

Therefore, if $\mathcal{B}=\left(B,{ }_{\mathcal{B}}\right)$ is a $\Sigma(X)$-algebra, then ${ }_{-\mathcal{B}}$ decomposes uniquely as a pair $\left(\left.{ }_{\mathcal{B}}\right|_{F},\left.{ }_{-\mathcal{B}}\right|_{X}\right)$. But note that $\left.{ }_{-\mathcal{B}}\right|_{X}: X \rightarrow B$ is just an assignment! and $\left(B,\left.{ }_{-\mathcal{B}}\right|_{F}\right)$ is just a Σ-algebra! Notation: $\left(B,\left.{ }_{\mathcal{B}}\right|_{F}\right)=\left.\mathcal{B}\right|_{\Sigma}$, the Σ-reduct of \mathcal{B}.

Fact 2: $\mathcal{B}=\left(B,{ }_{\mathcal{B}}\right)$ decomposes uniquely as $\mathcal{B}=\left(\left.\mathcal{B}\right|_{\Sigma},\left.{ }_{-\mathcal{B}}\right|_{X}\right)$.

More $\Sigma(X)$-Homomorphisms

Facts 1 and 2 tell us that any $\Sigma(X)$-algebra is exactly the same thing as a pair (\mathcal{A}, a) with \mathcal{A} a Σ-algebra and $a \in[X \rightarrow A]$ an assignment.

Q: What is a $\Sigma(X)$-homomorphism $h:(\mathcal{A}, a) \rightarrow(\mathcal{C}, c) ?$

A: The answer is summarized in Fact 3 below.

Fact 3: Since h must preserve both the Σ-symbols F and the constants X but $F \cap X=\emptyset, h$ is exactly:

1. a Σ-homomorphism $h: \mathcal{A} \rightarrow \mathcal{C}$ such that
2. for each $s \in S, x \in X_{s}, h_{s}(a(x))=c(x)$, i.e., $a ; h=c$.

Example: Substitutions Revisited

Let us apply Fact 2 to the initial $\Sigma(X)$-algebra
$\mathcal{T}_{\Sigma(X)}=\left(T_{\Sigma(X)},-\mathcal{T}_{\Sigma(X)}\right)$. What unique decomposition do we get for $\mathcal{T}_{\Sigma(X)}$? We get a pair $\left(\mathcal{T}_{\Sigma(X)} \mid \Sigma, \eta_{X}\right)$, where:

1. $\left.\mathcal{T}_{\Sigma(X)}\right|_{\Sigma}=\left(T_{\Sigma(X)},-\mathcal{T}_{\Sigma(X)} \mid{ }_{F}\right)$, that is, the elements $t \in T_{\Sigma(X)}$ are the same: (Σ-terms with variables in X), but only the Σ-operations are considered; and
2. $\eta_{X}: X \rightarrow T_{\Sigma(X)}: x \mapsto x$ is the identity interpretation for each variable x in X, that is, the identity substitution.

To simplify the notation, we will denote $\left.\mathcal{T}_{\Sigma(X)}\right|_{\Sigma}$ by $\mathcal{T}_{\Sigma}(X)$, and will call it the free Σ-algebra on the variables X.

Example: Substitutions Revisited (II)

Consider now another S-sorted set Y of variables and a substitution $\theta: X \rightarrow T_{\Sigma(Y)}$.

Q: how can we model the extension of θ to the map on terms _ $\theta: T_{\Sigma(X)} \rightarrow T_{\Sigma(Y)}$ defined in Lecture 3 ?

A: Easy! Consider the $\Sigma(X)$-algebra $\left(\mathcal{T}_{\Sigma}(Y), \theta\right)$. Then ${ }_{\wedge} \theta$ is just the unique $\Sigma(X)$-homomorphism:

$$
\theta={ }{-} \theta_{\mathcal{T}_{\Sigma}(Y)}: \mathcal{T}_{\Sigma(X)} \rightarrow\left(\mathcal{T}_{\Sigma}(Y), \theta\right)
$$

which decomposing $\mathcal{T}_{\Sigma(X)}$ as $\mathcal{T}_{\Sigma(X)}=\left(\mathcal{T}_{\Sigma}(X), \eta_{X}\right)$, is the unique $\Sigma(X)$-homomorphism:

$$
\theta:\left(\mathcal{T}{\Sigma}(X), \eta_{X}\right) \rightarrow\left(\mathcal{T}_{\Sigma}(Y), \theta\right)
$$

Example: Substitutions Revisited (III)

But by Fact 3, $\quad \theta:\left(\mathcal{T}_{\Sigma}(X), \eta_{X}\right) \rightarrow\left(\mathcal{T}_{\Sigma}(Y), \theta\right)$ is a $\Sigma(X)$-homomorphism iff:

1. $\quad \theta: \mathcal{T}_{\Sigma}(X) \rightarrow \mathcal{T}_{\Sigma}(Y)$ is a Σ-homomorphism, and
2. $\eta_{X} ;-\theta=\theta$

Therefore, each substitution θ has a unique extension to a Σ-homomorphism _ θ such that the following diagram commutes:

Homomorphic Extension of Substitutions

Set ${ }^{S}$: S-Indexed Families and S-Indexed Functions

AlgΣ : Σ-Algebras and Σ-Homomorphism

Freeness Theorem

The extension $\theta \mapsto _\theta$ is an instance of the more general:

Theorem (Freeness Theorem). For each Σ-algebra $\mathcal{A}=\left(A,{ }_{-\mathcal{A}}\right)$, and assignment $a: X \longrightarrow A$ there exists a unique Σ-homomorphism $a_{\mathcal{A}}: \mathcal{T}_{\Sigma}(X) \longrightarrow \mathcal{A}$ such that $\eta_{X} ;{ }_{_} a_{\mathcal{A}}=a$.

Proof: Since (\mathcal{A}, a) is a $\Sigma(X)$-algebra, by the initiality of $\mathcal{T}_{\Sigma(X)}$ there is a unique $\Sigma(X)$-homomorphism

$$
__{\mathcal{A}}: \mathcal{T}_{\Sigma(X)} \rightarrow(\mathcal{A}, a)
$$

which decomposing $\mathcal{T}_{\Sigma(X)}$ as $\mathcal{T}_{\Sigma(X)}=\left(\mathcal{T}_{\Sigma}(X), \eta_{X}\right)$, is the same thing as a unique $\Sigma(X)$-homomorphism:

$$
__{\mathcal{A}}:\left(\mathcal{T}_{\Sigma}(X), \eta_{X}\right) \rightarrow(\mathcal{A}, a)
$$

which by the definition of $\Sigma(X)$-homomorphism is the same thing as a unique Σ-homomorphism

$$
{ }_{-} a_{\mathcal{A}}: \mathcal{T}_{\Sigma}(X) \rightarrow \mathcal{A}
$$

such that $\eta_{X} ;{ }_{_} a_{\mathcal{A}}=a$, as desired. q.e.d.

This theorem can be summarized in the following diagram:

$\mathcal{T}_{\Sigma}(X)$ as a Free Σ-Algebra on X

Set S : S-Indexed Families and S-Indexed Functions
$\operatorname{Alg}_{\Sigma}: \Sigma$-Algebras and Σ-Homomorphism

Useful Corollary on Free Σ-Algebras

Corollary (Freeness Corollary). For any Σ-homomorphism $h: \mathcal{A} \longrightarrow \mathcal{B}$, and assignments $a: X \longrightarrow A, b: X \longrightarrow B$ such that $a ; h=b$, the following identity between
Σ-homomorphisms holds:

$$
{ }_{-} a_{\mathcal{A}} ; h={ }_{-} b_{\mathcal{B}}
$$

Proof: $__{\mathcal{A}} ; h$ is a Σ-homomorphism $__{\mathcal{A}} ; h: \mathcal{T}_{\Sigma}(X) \longrightarrow \mathcal{B}$. But since, by hypothesis, we have $a ; h=b$, we must also have: $\eta_{X} ; a_{\mathcal{A}} ; h=a ; h=b$, which by the Freeness Theorem forces $a_{\mathcal{A}} ; h=__{\mathcal{B}}$, as desired. q.e.d.

The corollary can be summarized in the following diagram:

Useful Corollary on Free Σ-Algebras (II)

Set S : S-Indexed Families and S-Indexed Functions
$\operatorname{Alg}_{\Sigma}: \Sigma$-Algebras and Σ-Homomorphism

What is "free" about a Free Algebra?

Clearly, the concept of a free Σ-algebra $\mathcal{T}_{\Sigma}(X)$ generalizes the case of an initial algebra, since when $X=\emptyset$, where \emptyset here denotes the S-indexed set having all its components empty, we have $\mathcal{T}_{\Sigma}(\emptyset)=\mathcal{T}_{\Sigma}$. As in the case of initial algebras, free algebras have (provided Σ is sensible) no confusion. Therefore, the first meaning of "free" is that no equalities force terms in $\mathcal{T}_{\Sigma}(X)$ to become equal: they are all different, unconstrained, and in this sense "free."

Note that if X is nonempty $\mathcal{T}_{\Sigma}(X)$ has junk! (even though, $\mathcal{T}_{\Sigma(X)}$, with the same data elements, doesn't!). Which junk? Well, X, of course, and all the junk spread by X when building terms with variables. However, this "junk" is very well-behaved.

What is "free" about a Free Algebra? (II)

X is well-behaved: we can feely interpret the variables in X as data elements in any Σ-algebra \mathcal{B} by any assignment $b: X \longrightarrow B$ with the guarantee that b will always extend to a unique Σ-homomorphism $_b_{\mathcal{B}}$. This free interpretation and free extensibility is the second meaning of "free."

This freedom is not enjoyed by other algebras. Let Σ be the unsorted signature with constant 0 and unary $s . \mathcal{T}_{\Sigma}$ is the natural numbers in Peano notation. Define $\mathcal{T}_{\Sigma} \cup\{x, y, z\}$ with elements $T_{\Sigma} \cup\{x, y, z\}$, with 0 and s interpreted as before on the T_{Σ} part, and with $s(x)=y, s(y)=z$, and $s(z)=x$. Now the junk $X=\{x, y, z\}$ is badly behaved. Let \mathbb{N} be the natural numbers in decimal notation with 0 and succesor. There is no assignment at all $b: X \longrightarrow \mathbb{N}$ that can be extended to a Σ-homomorphism $\mathcal{T}_{\Sigma} \cup\{x, y, z\} \longrightarrow \mathbb{N}$.

Satisfaction of Equations

Let $X=\left\{X_{s}\right\}$ be such that for each $s \in S, X_{s}$ is a countably infinite set. Given a Σ-algebra \mathcal{A}, an assignment $a: X \longrightarrow A$, and a Σ-equation $t=t^{\prime}$ with variables in X, we define the satisfaction relation $(\mathcal{A}, a) \models t=t^{\prime}$ by means of the equivalence,

$$
(\mathcal{A}, a) \models t=t^{\prime} \quad \Leftrightarrow \quad t a_{\mathcal{A}}=t^{\prime} a_{\mathcal{A}}
$$

We then define the satisfaction relation $\mathcal{A} \models t=t^{\prime}$ iff for all assignments $a: X \longrightarrow A$ we have $(\mathcal{A}, a) \models t=t^{\prime}$.

Note that, since each (\mathcal{A}, a) is a $\Sigma(X)$-algebra, we have defined the satisfaction of $\mathcal{A} \models t=t^{\prime}$ as the satisfaction of the ground $\Sigma(X)$-equation $t=t^{\prime}$ by each (\mathcal{A}, a), denoted $(\mathcal{A}, a) \models t=t^{\prime}$, for all assignments a.

Examples of Satisfaction

Consider the unsorted signature Σ with constants 0,1 , and operations of addition _ + _, and multiplication $*_{\text {_ }}$. Then all the algebras $\mathbb{N}, \mathbb{N}_{k}, \mathbf{Z}, \mathbf{Q}, \mathbf{R}, \mathbf{C}$, in Lecture 2, pp. 27-28, satisfy the equations:

- $x+0=x$
- $x+y=y+x$
- $x+(y+z)=(x+y)+z$
- $x * 1=x$
- $x * y=y * x$
- $x *(y * z)=(x * y) * z$

Examples of Satisfaction (II)

Consider the signature Σ for Boolean operations in page 29 of Lecture 2. Then all Σ-algebras $\mathbf{B}, \mathcal{P}(X), \mathbf{B}^{X}$, and $[0,1]$ satisfy the equations:

- x and true $=x \quad(\forall x)$ x or false $=x$
- x and $y=y$ and $x \quad(\forall x, y) x$ or $y=y$ or x
- x and $(y$ and $z)=(x$ and $y)$ and z
- x or $(y$ or $z)=(x$ or $y)$ or z
- x and $x=x \quad x$ or $x=x$

Examples of Satisfaction (III)

Consider the NAT-LIST signature in Lecture 2, and the two algebras for it defined in Lecture 2, pages 34-35. Show that the first algebra (where the sort List is interpreted as finite strings of natural numbers) satisfies all the equation in the module NAT-LIST.

Show also that the second algebra (where the sort List is interpreted as finite sets of natural numbers) does not satisfy the equation
eq length(N . L) = s length(L) .

Examples of Satisfaction (IV)

Consider all the examples $1-6$, and the first version of example 7, of algebras for the "vector-space-like" signature of Picture 2.4 defined in pages 35-38 of Lecture 2. Prove that, for x, y variables of sort Scalar, and v, v^{\prime} variables of sort Vector, all these algebras satisfy the equations:

- $(x+y) \cdot v=(x \cdot v)+(y \cdot v)$
- $x .\left(v+v^{\prime}\right)=(x . v)+\left(x . v^{\prime}\right)$
- $0 . v=\overrightarrow{0}$
- $1 . v=v$

Examples of Satisfaction (V)

A permutation on n elements is a bijective function
$\pi:[n] \longrightarrow[n]$, where $[n]=\{1, \ldots, n\}$. The set of all such permutations is denoted S_{n} and has function composition as a binary operation _o_ for which the identity permutation $1_{[n]}:[n] \longrightarrow[n]$ is an identity element. Also, for each $\pi \in S_{n}$ the inverse function π^{-1} is another permutation such that, $\pi \circ \pi^{-1}=1_{[n]}=\pi^{-1} \circ \pi . S_{n}$ is called the symmetric group on n elements, because it satisfies the group theory axioms,
$x \circ(y \circ z)=(x \circ y) \circ z \quad$ (associativity)
$x \circ 1=x=1 \circ x \quad$ (identity)
$x \circ x^{-1}=1=x^{-1} \circ x \quad$ (inverse)
Similarly, given a set X of elements, the set X^{*} of its strings with the concatenation operation is a monoid, because it satisfies the above associativity and identity axioms.

Models and Theorems of Theories

Given an order-sorted equational theory (Σ, E) and a Σ-algebra \mathcal{A}, we write $\mathcal{A} \models(\Sigma, E)$, or, equivalently, $\mathcal{A} \models E$, iff \mathcal{A} satisfies all the equations in E. We then call \mathcal{A} a model of (Σ, E), or a (Σ, E)-algebra. For example, for (Σ, E) the theory groups (resp. monoids), a model of (Σ, E) is called a group (resp. a monoid).

Given a theory (Σ, E), what other equations, besides those in E, does any (Σ, E)-algebra satisfy? We call an equation $t=t^{\prime}$ a theorem of (Σ, E) iff for each (Σ, E)-algebra \mathcal{A} we have, $\mathcal{A} \models t=t^{\prime}$. We then write $(\Sigma, E) \models t=t^{\prime}$.

We have now two different relations: (i) $(\Sigma, E) \vdash t=t^{\prime}$, telling us which equations we can mechanically prove, and (ii) $(\Sigma, E) \models t=t^{\prime}$, telling us which equations are theorems.

Soundness and Completeness

There are now two obvious questions:
Soundness: Does the implication

$$
(\Sigma, E) \vdash t=t^{\prime} \quad \Rightarrow \quad(\Sigma, E) \models t=t
$$

always hold? That is, is anything we can prove always true, i.e., always a theorem? For example, we can prove the equations $1^{-1}=1$ and $(x \circ y)^{-1}=y^{-1} \circ x^{-1}$ from the theory of groups, but are they really theorems of group theory?

Completeness: Does the implication

$$
(\Sigma, E) \models t=t^{\prime} \quad \Rightarrow \quad(\Sigma, E) \vdash t=t
$$

always hold? That is, can we prove all the equations that are theorems of (Σ, E) ?

Soundness Theorem

Soundness Theorem. For (Σ, E) an equational theory with Σ sensible, kind-complete, and with nonempty sorts, and for all Σ-equations $t=t^{\prime}$, we have the implication:

$$
(\Sigma, E) \vdash t=t^{\prime} \quad \Rightarrow \quad(\Sigma, E) \models t=t^{\prime}
$$

Proof: Note that, by definition, we have

$$
(\Sigma, E) \vdash t=t^{\prime} \Leftrightarrow t==_{E} t^{\prime} \Leftrightarrow(\Sigma, \vec{E} \cup \overleftarrow{E}) \vdash t \rightarrow^{*} t^{\prime}
$$

Therefore, what we have to prove is the implication

$$
(\Sigma, \vec{E} \cup \overleftarrow{E}) \vdash t \rightarrow^{*} t^{\prime} \quad \Rightarrow \quad(\Sigma, E) \models t=t^{\prime}
$$

We can do so by induction on the length of the rewrite sequence $t \rightarrow^{*} t^{\prime}$.

Soundness Theorem (II)

Base Case. If the length of $t \rightarrow^{*} t^{\prime}$ is 0 , then t^{\prime} is identical to t, so we need to prove $(\Sigma, E) \models t=t$, which trivially holds, since for any Σ-algebra \mathcal{A} we have $\mathcal{A} \models t=t$. In particular, if $\mathcal{A} \models E$, then, of course, $\mathcal{A} \models t=t$.

Induction Step. Assume that if $(\Sigma, \vec{E} \cup \overleftarrow{E}) \vdash t \rightarrow^{*} w$ and the sequence $t \rightarrow^{*} w$ has length n, then the relation $(\Sigma, E) \models t=w$ holds, and consider an additional rewrite step $w \rightarrow \vec{E} \cup \overleftarrow{E} t^{\prime}$. We then need to prove that $(\Sigma, E) \models t=t^{\prime}$. We will be done if we can prove:

Lemma. For all w, t^{\prime}, if $w \rightarrow \vec{E} \cup \overleftarrow{E} t^{\prime}$ then $(\Sigma, E) \models w=t^{\prime}$

Soundness Theorem (III)

Indeed, if this Lemma holds, then for each Σ-algebra \mathcal{A} such that $\mathcal{A} \models E$ and each assignment a we have $(\mathcal{A}, a) \models t=w$ (by Ind. Hyp.), and $(\mathcal{A}, a) \models w=t^{\prime}$ (by Lemma). That is,

$$
t a_{\mathcal{A}}=w a_{\mathcal{A}} \wedge w a_{\mathcal{A}}=t^{\prime \prime} a_{\mathcal{A}}
$$

and therefore $(\mathcal{A}, a) \models t=t^{\prime \prime}$, so that $(\Sigma, E) \models t=t^{\prime}$.
Proof of the Lemma. We must prove the implication $w \rightarrow \vec{E} \cup \overleftarrow{E} t^{\prime} \Rightarrow(\Sigma, E) \models w=t^{\prime}$. But the rewrite $w \rightarrow \vec{E} \cup \overleftarrow{E} t^{\prime}$ uses an equation $(u=v) \in E$ either from left to right or from right to left at some position p in w and with some substitution $\theta: X \rightarrow T_{\Sigma(X)}$, so that, if $u=v$ is applied left-to-right, $w=w[u \theta]_{p}$ and $t^{\prime}=w[v \theta]_{p}$.

We prove the case where $u=v$ is applied from left to right. The right-to-left case is completely similar.

Soundness Theorem (IV)

The proof is by induction of the length $|p|$ of the position p.
Base Case. If $|p|=0$, then $p=\epsilon$ is the empty string.
Therefore we have $w=u \theta$ and $t^{\prime}=v \theta$, and we need to prove that for each \mathcal{A} such that $\mathcal{A} \models E$ and each assignment a we have $(\mathcal{A}, a) \models u \theta=v \theta$, that is, that $u \theta a_{\mathcal{A}}=v \theta a_{\mathcal{A}}$.

But by the Freeness Corollary and definition of $_\theta$ we have:

$$
_\theta ; _a_{\mathcal{A}}=\left(\eta_{X} ; _\theta ;{ }_{\wedge} a_{\mathcal{A}}\right)_{\mathcal{A}}=\left(\theta ; _a_{\mathcal{A}}\right)_{\mathcal{A}}
$$

And since $\mathcal{A} \models E$ and $\left(\theta ; a_{\mathcal{A}}\right) \in[X \rightarrow A]$, in particular, $\left(\mathcal{A},\left(\theta ; a_{\mathcal{A}}\right)\right) \models u=v$, that is, $u \theta a_{\mathcal{A}}=v \theta a_{\mathcal{A}}$, as desired.

Soundness Theorem (V)

Induction Hypothesis. We assume that the Lemma holds for $|p|=n$. Consider now $w=w[u \theta]_{i . p}$ and $t^{\prime}=w[v \theta]_{i . p}$, with $|i . p|=n+1$. This means that, for some $f, w=f\left(w_{1}, \ldots, w_{n}\right)$, $1 \leq i \leq n, w=f\left(w_{1}, \ldots, w_{i}[u \theta]_{p}, \ldots, w_{n}\right)$ and $t^{\prime}=f\left(w_{1}, \ldots, w_{i}[v \theta]_{p}, \ldots, w_{n}\right)$.

But by the Ind. Hyp., if $\mathcal{A} \models E$ then $\mathcal{A} \models w_{i}[u \theta]_{p}=w_{i}[v \theta]_{p}$. Therefore, for any assignment $a \in[X \rightarrow A]$ we have:
$w a_{\mathcal{A}}=f_{\mathcal{A}}\left(w_{1} a_{\mathcal{A}}, \ldots, w_{i}[u \theta]_{p} a_{\mathcal{A}}, \ldots, w_{n} a_{\mathcal{A}}\right)=f_{\mathcal{A}}\left(w_{1} a_{\mathcal{A}}, \ldots, w_{i}[v \theta]_{p} a_{\mathcal{A}}, \ldots, w_{n} a_{\mathcal{A}}\right)=t^{\prime} a_{\mathcal{A}}$ as desired. q.e.d.

This also concludes the proof of the Theorem. q.e.d.

Exercises

Ex.10.1 For a subsignature $\Sigma=((S, \leq), F) \subseteq \Sigma^{\prime}=\left((S, \leq), F^{\prime}\right)$ and $\mathcal{A}=\left(A, \mathcal{A}^{\prime}\right)$ a Σ^{\prime}-algebra, define its Σ-reduct $\left.\mathcal{A}\right|_{\Sigma}$ as the Σ-algebra $\left.\mathcal{A}\right|_{\Sigma}=\left(A,\left.{ }_{-\mathcal{A}}\right|_{F}\right)$. Prove that for any Σ-equation $u=v$ we have the equivalence:

$$
\mathcal{A} \models u=\left.v \quad \Leftrightarrow \quad \mathcal{A}\right|_{\Sigma} \models u=v .
$$

Ex. 10.2 (i) Let $h: \mathcal{A} \longrightarrow \mathcal{B}$ be a Σ-isomorphism, and $u=v$ a Σ-equation. Prove that

$$
\mathcal{B} \models u=v \quad \Leftrightarrow \quad \mathcal{A} \models u=v
$$

(ii) Give an example of a bijective Σ-homomorphism h such that the above equivalence does not hold (Hint: Consider order-sorted signatures Σ that are not kind-complete).

Exercises (II)

Ex.10.3 Call a Σ-algebra \mathcal{A} a subalgebra of a Σ-algebra \mathcal{B} iff for each sort $s \in S$ we have $A_{s} \subseteq B_{s}$, and the S-family of inclusion functions $j=\left\{j_{s}: A_{s} \longrightarrow B_{s}\right\}_{s \in S}$, with $j_{s}: a \mapsto a$ mapping each element $a \in A_{s}$ identically to itself is a Σ-homomorphism $j: \mathcal{A} \longrightarrow \mathcal{B}$. We then write: $\mathcal{A} \subseteq \mathcal{B}$. Show that if $\mathcal{A} \subseteq \mathcal{B}$, for any Σ-equation $u=v$ we have:

$$
\mathcal{B} \models u=v \quad \Rightarrow \quad \mathcal{A} \models u=v
$$

Give an example showing that the implication in the other direction in general does not hold.

Exercises (II)

Ex.10.4 Let $h: \mathcal{A} \longrightarrow \mathcal{B}$ be a surjective Σ-homomorphism, and $u=v$ a Σ-equation. Prove that

$$
\mathcal{A} \models u=v \quad \Rightarrow \quad \mathcal{B} \models u=v
$$

Show, by giving a counterexample, that the implication in the other direction in general does not hold.

