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José Meseguer

Computer Science Department

University of Illinois at Urbana-Champaign

1



More on Σ(X)-Algebras

Recall how we formalized the evaluation of integer

arithmetic expressions with memory m : X → Z as the

unique Σ(X)-homomorphism:

(Z,m) : TΣ(X) → (Z ,m)

where (Z ,m) extends the integer Σ-algebra Z = (Z, Z) by

interpreting the constants X as the memory map m : X → Z.

This situation is completely general: For any signature Σ

and any Σ-algebra A = (A, Z), given an assignment, i.e., a

“memory map,” a : X → A, the evaluation of

Σ(X)-expressions in A is the unique Σ(X)-homomorphism:

(A,a) : TΣ(X) → (A, a)

Abbreviated Notation: (A,a) = aA.
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More Σ(X)-Algebras (II)

We can summarize this situation as the following:

Fact 1: Any pair (A, a) with A = (A, A) a Σ-algebra and

a : X → A an assignment defines a Σ(X)-algebra (A, a).

Q: Are all Σ(X)-algebras of this form?

A: Yes! We just need to recall the definition of an

order-sorted Σ-algebra in Lecture 3:

For Σ = ((S,≤), F )) a signature, Σ-algebra A = (A, A) is just

a pair with: (i) A an S-sorted set, and (ii) A a function

A : f 7→ fA interpreting each constant c :→ s as an element

cA ∈ As, and each symbol f : w → s in Σ as a function

fA ∈ [Aw
→As], with f overloaded agreeing on common data.
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More Σ(X)-Algebras (III)

Therefore, if Σ = ((S,≤), F )), then Σ(X) = ((S,≤), F ⊎X)),

where each new constant x ∈ Xs has typing x :→ s, and ⊎

denotes disjoint union of sets.

Recall from STACS that if sets U and V are disjoint, any

function h : U ⊎ V →W decomposes uniquely as a pair

(h|U : U →W,h|V : V →W ) of its restrictions to U and V .

Therefore, if B = (B, B) is a Σ(X)-algebra, then B

decomposes uniquely as a pair ( B|F , B|X). But note that

B|X : X → B is just an assignment! and (B, B|F ) is just a

Σ-algebra! Notation: (B, B|F ) = B|Σ, the Σ-reduct of B.

Fact 2: B = (B, B) decomposes uniquely as B = (B|Σ, B|X).
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More Σ(X)-Homomorphisms

Facts 1 and 2 tell us that any Σ(X)-algebra is exactly the

same thing as a pair (A, a) with A a Σ-algebra and

a ∈ [X→A] an assignment.

Q: What is a Σ(X)-homomorphism h : (A, a)→ (C, c)?

A: The answer is summarized in Fact 3 below.

Fact 3: Since h must preserve both the Σ-symbols F and

the constants X but F ∩X = ∅, h is exactly:

1. a Σ-homomorphism h : A → C such that

2. for each s ∈ S, x ∈ Xs, hs(a(x)) = c(x), i.e., a;h = c.
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Example: Substitutions Revisited

Let us apply Fact 2 to the initial Σ(X)-algebra

TΣ(X) = (TΣ(X), TΣ(X)
). What unique decomposition do we

get for TΣ(X)? We get a pair (TΣ(X)|Σ, ηX), where:

1. TΣ(X)|Σ = (TΣ(X), TΣ(X)
|F ), that is, the elements t ∈ TΣ(X)

are the same: (Σ-terms with variables in X), but only

the Σ-operations are considered; and

2. ηX : X → TΣ(X) : x 7→ x is the identity interpretation for

each variable x in X, that is, the identity substitution.

To simplify the notation, we will denote TΣ(X)|Σ by TΣ(X),

and will call it the free Σ-algebra on the variables X.
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Example: Substitutions Revisited (II)

Consider now another S-sorted set Y of variables and a

substitution θ : X → TΣ(Y ).

Q: how can we model the extension of θ to the map on

terms θ : TΣ(X) → TΣ(Y ) defined in Lecture 3?

A: Easy! Consider the Σ(X)-algebra (TΣ(Y ), θ). Then θ is

just the unique Σ(X)-homomorphism:

θ = θTΣ(Y ) : TΣ(X) → (TΣ(Y ), θ),

which decomposing TΣ(X) as TΣ(X) = (TΣ(X), ηX), is the

unique Σ(X)-homomorphism:

θ : (TΣ(X), ηX)→ (TΣ(Y ), θ).

7



Example: Substitutions Revisited (III)

But by Fact 3, θ : (TΣ(X), ηX)→ (TΣ(Y ), θ) is a

Σ(X)-homomorphism iff:

1. θ : TΣ(X)→ TΣ(Y ) is a Σ-homomorphism, and

2. ηX ; θ = θ

Therefore, each substitution θ has a unique extension to a

Σ-homomorphism θ such that the following diagram

commutes:
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Homomorphic Extension of Substitutions

X TΣ(X)
✲

TΣ(Y )

❏
❏
❏
❏
❏
❏
❏
❏❫ ❄

θ∀θ

ηX

SetS : S-Indexed Families and S-Indexed Functions

TΣ(X)

TΣ(Y )

∃! θ

AlgΣ: Σ-Algebras and Σ-Homomorphism

❄
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Freeness Theorem

The extension θ 7→ θ is an instance of the more general:

Theorem (Freeness Theorem). For each Σ-algebra

A = (A, A), and assignment a : X −→ A there exists a unique

Σ-homomorphism aA : TΣ(X) −→ A such that ηX ; aA = a.

Proof: Since (A, a) is a Σ(X)-algebra, by the initiality of

TΣ(X) there is a unique Σ(X)-homomorphism

aA : TΣ(X) → (A, a),

which decomposing TΣ(X) as TΣ(X) = (TΣ(X), ηX), is the same

thing as a unique Σ(X)-homomorphism:

aA : (TΣ(X), ηX)→ (A, a),
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which by the definition of Σ(X)-homomorphism is the same

thing as a unique Σ-homomorphism

aA : TΣ(X)→ A

such that ηX ; aA = a, as desired. q.e.d.

This theorem can be summarized in the following diagram:
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TΣ(X) as a Free Σ-Algebra on X

X TΣ(X)
✲

A

❏
❏
❏
❏
❏
❏
❏
❏❫ ❄

aA∀a

ηX

SetS : S-Indexed Families and S-Indexed Functions

TΣ(X)

A

∃! aA

AlgΣ: Σ-Algebras and Σ-Homomorphism

❄
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Useful Corollary on Free Σ-Algebras

Corollary (Freeness Corollary). For any Σ-homomorphism

h : A −→ B, and assignments a : X −→ A, b : X −→ B such

that a;h = b, the following identity between

Σ-homomorphisms holds:

aA;h = bB

Proof: aA;h is a Σ-homomorphism aA;h : TΣ(X) −→ B.

But since, by hypothesis, we have a;h = b, we must also

have: ηX ; aA;h = a;h = b, which by the Freeness Theorem

forces aA;h = bB, as desired. q.e.d.

The corollary can be summarized in the following diagram:
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Useful Corollary on Free Σ-Algebras (II)

X A✲

B

❏
❏
❏
❏
❏
❏
❏
❏❫ ❄

hb

a

SetS : S-Indexed Families and S-Indexed Functions

TΣ(X) A✲

B

❏
❏
❏
❏
❏
❏
❏
❏❫ ❄

hbB

aA

AlgΣ: Σ-Algebras and Σ-Homomorphism
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What is “free” about a Free Algebra?

Clearly, the concept of a free Σ-algebra TΣ(X) generalizes

the case of an initial algebra, since when X = ∅, where ∅

here denotes the S-indexed set having all its components

empty, we have TΣ(∅) = TΣ. As in the case of initial

algebras, free algebras have (provided Σ is sensible) no

confusion. Therefore, the first meaning of “free” is that no

equalities force terms in TΣ(X) to become equal: they are

all different, unconstrained, and in this sense “free.”

Note that if X is nonempty TΣ(X) has junk! (even though,

TΣ(X), with the same data elements, doesn’t!). Which junk?

Well, X, of course, and all the junk spread by X when

building terms with variables. However, this “junk” is very

well-behaved.
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What is “free” about a Free Algebra? (II)

X is well-behaved: we can feely interpret the variables in X

as data elements in any Σ-algebra B by any assignment

b : X −→ B with the guarantee that b will always extend to a

unique Σ-homomorphism bB. This free interpretation and

free extensibility is the second meaning of “free.”

This freedom is not enjoyed by other algebras. Let Σ be the

unsorted signature with constant 0 and unary s. TΣ is the

natural numbers in Peano notation. Define TΣ ∪ {x, y, z}

with elements TΣ ∪ {x, y, z}, with 0 and s interpreted as

before on the TΣ part, and with s(x) = y, s(y) = z, and

s(z) = x. Now the junk X = {x, y, z} is badly behaved. Let IN

be the natural numbers in decimal notation with 0 and

succesor. There is no assignment at all b : X −→ IN that can

be extended to a Σ-homomorphism TΣ ∪ {x, y, z} −→ IN.
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Satisfaction of Equations

Let X = {Xs} be such that for each s ∈ S, Xs is a countably

infinite set. Given a Σ-algebra A, an assignment a : X −→ A,

and a Σ-equation t = t′ with variables in X, we define the

satisfaction relation (A, a) |= t = t′ by means of the

equivalence,

(A, a) |= t = t′ ⇔ t aA = t′ aA.

We then define the satisfaction relation A |= t = t′ iff for all

assignments a : X −→ A we have (A, a) |= t = t′.

Note that, since each (A, a) is a Σ(X)-algebra, we have

defined the satisfaction of A |= t = t′ as the satisfaction of

the ground Σ(X)-equation t = t′ by each (A, a), denoted

(A, a) |= t = t′, for all assignments a.
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Examples of Satisfaction

Consider the unsorted signature Σ with constants 0, 1, and

operations of addition + , and multiplication ∗ . Then

all the algebras IN, INk, Z, Q, R, C, in Lecture 2, pp. 27-28,

satisfy the equations:

• x+ 0 = x

• x+ y = y + x

• x+ (y + z) = (x+ y) + z

• x ∗ 1 = x

• x ∗ y = y ∗ x

• x ∗ (y ∗ z) = (x ∗ y) ∗ z
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Examples of Satisfaction (II)

Consider the signature Σ for Boolean operations in page 29

of Lecture 2. Then all Σ-algebras B, P(X), BX , and [0, 1]

satisfy the equations:

• x and true = x (∀x) x or false = x

• x and y = y and x (∀x, y) x or y = y or x

• x and (y and z) = (x and y) and z

• x or (y or z) = (x or y) or z

• x and x = x x or x = x
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Examples of Satisfaction (III)

Consider the NAT-LIST signature in Lecture 2, and the two

algebras for it defined in Lecture 2, pages 34–35. Show

that the first algebra (where the sort List is interpreted as

finite strings of natural numbers) satisfies all the equation

in the module NAT-LIST.

Show also that the second algebra ( where the sort List is

interpreted as finite sets of natural numbers) does not

satisfy the equation

eq length(N . L) = s length(L) .
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Examples of Satisfaction (IV)

Consider all the examples 1–6, and the first version of

example 7, of algebras for the “vector-space-like” signature

of Picture 2.4 defined in pages 35–38 of Lecture 2. Prove

that, for x, y variables of sort Scalar, and v, v′ variables of

sort Vector, all these algebras satisfy the equations:

• (x+ y).v = (x.v) + (y.v)

• x.(v + v′) = (x.v) + (x.v′)

• 0.v = ~0

• 1.v = v
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Examples of Satisfaction (V)

A permutation on n elements is a bijective function

π : [n] −→ [n], where [n] = {1, . . . , n}. The set of all such

permutations is denoted Sn and has function composition as

a binary operation ◦ for which the identity permutation

1[n] : [n] −→ [n] is an identity element. Also, for each π ∈ Sn

the inverse function π−1 is another permutation such that,

π ◦ π−1 = 1[n] = π−1 ◦ π. Sn is called the symmetric group on

n elements, because it satisfies the group theory axioms,

x ◦ (y ◦ z) = (x ◦ y) ◦ z (associativity)

x ◦ 1 = x = 1 ◦ x (identity)

x ◦ x−1 = 1 = x−1 ◦ x (inverse)

Similarly, given a set X of elements, the set X∗ of its strings

with the concatenation operation is a monoid, because it

satisfies the above associativity and identity axioms.
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Models and Theorems of Theories

Given an order-sorted equational theory (Σ, E) and a

Σ-algebra A, we write A |= (Σ, E), or, equivalently, A |= E, iff

A satisfies all the equations in E. We then call A a model

of (Σ, E), or a (Σ, E)-algebra. For example, for (Σ, E) the

theory groups (resp. monoids), a model of (Σ, E) is called a

group (resp. a monoid).

Given a theory (Σ, E), what other equations, besides those

in E, does any (Σ, E)-algebra satisfy? We call an equation

t = t′ a theorem of (Σ, E) iff for each (Σ, E)-algebra A we

have, A |= t = t′. We then write (Σ, E) |= t = t′.

We have now two different relations: (i) (Σ, E) ⊢ t = t′,

telling us which equations we can mechanically prove, and

(ii) (Σ, E) |= t = t′, telling us which equations are theorems.
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Soundness and Completeness

There are now two obvious questions:

Soundness: Does the implication

(Σ, E) ⊢ t = t′ ⇒ (Σ, E) |= t = t

always hold? That is, is anything we can prove always true,

i.e., always a theorem? For example, we can prove the

equations 1−1 = 1 and (x ◦ y)−1 = y−1 ◦ x−1 from the theory

of groups, but are they really theorems of group theory?

Completeness: Does the implication

(Σ, E) |= t = t′ ⇒ (Σ, E) ⊢ t = t

always hold? That is, can we prove all the equations that

are theorems of (Σ, E)?
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Soundness Theorem

Soundness Theorem. For (Σ, E) an equational theory with

Σ sensible, kind-complete, and with nonempty sorts, and for

all Σ-equations t = t′, we have the implication:

(Σ, E) ⊢ t = t′ ⇒ (Σ, E) |= t = t′.

Proof: Note that, by definition, we have

(Σ, E) ⊢ t = t′ ⇔ t =E t′ ⇔ (Σ,
−→
E ∪

←−
E ) ⊢ t→∗ t′.

Therefore, what we have to prove is the implication

(Σ,
−→
E ∪

←−
E ) ⊢ t→∗ t′ ⇒ (Σ, E) |= t = t′.

We can do so by induction on the length of the rewrite

sequence t→∗ t′.
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Soundness Theorem (II)

Base Case. If the length of t→∗ t′ is 0, then t′ is identical

to t, so we need to prove (Σ, E) |= t = t, which trivially holds,

since for any Σ-algebra A we have A |= t = t. In particular, if

A |= E, then, of course, A |= t = t.

Induction Step. Assume that if (Σ,
−→
E ∪

←−
E ) ⊢ t→∗ w and

the sequence t→∗ w has length n, then the relation

(Σ, E) |= t = w holds, and consider an additional rewrite step

w →−→
E∪
←−
E

t′. We then need to prove that (Σ, E) |= t = t′. We

will be done if we can prove:

Lemma. For all w, t′, if w →−→
E∪
←−
E

t′ then (Σ, E) |= w = t′.
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Soundness Theorem (III)

Indeed, if this Lemma holds, then for each Σ-algebra A such

that A |= E and each assignment a we have (A, a) |= t = w

(by Ind. Hyp.), and (A, a) |= w = t′ (by Lemma). That is,

t aA = w aA ∧ w aA = t′′ aA

and therefore (A, a) |= t = t′′, so that (Σ, E) |= t = t′.

Proof of the Lemma. We must prove the implication

w →−→
E∪
←−
E

t′ ⇒ (Σ, E) |= w = t′. But the rewrite w →−→
E∪
←−
E

t′.

uses an equation (u = v) ∈ E either from left to right or

from right to left at some position p in w and with some

substitution θ : X → TΣ(X), so that, if u = v is applied

left-to-right, w = w[uθ]p and t′ = w[vθ]p.

We prove the case where u = v is applied from left to right.

The right-to-left case is completely similar.
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Soundness Theorem (IV)

The proof is by induction of the length |p| of the position p.

Base Case. If |p| = 0, then p = ǫ is the empty string.

Therefore we have w = uθ and t′ = vθ, and we need to prove

that for each A such that A |= E and each assignment a we

have (A, a) |= uθ = vθ, that is, that u θ aA = v θ aA.

But by the Freeness Corollary and definition of θ we have:

θ ; aA = (ηX ; θ; aA)A = (θ ; aA)A

And since A |= E and (θ; aA) ∈ [X→A], in particular,

(A, (θ ; aA)) |= u = v, that is, u θ aA = v θ aA, as desired.
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Soundness Theorem (V)

Induction Hypothesis. We assume that the Lemma holds

for |p| = n. Consider now w = w[uθ]i.p and t′ = w[vθ]i.p, with

|i.p| = n+ 1. This means that, for some f , w = f(w1, . . . , wn),

1 ≤ i ≤ n, w = f(w1, . . . , wi[uθ]p, . . . , wn) and

t′ = f(w1, . . . , wi[vθ]p, . . . , wn).

But by the Ind. Hyp., if A |= E then A |= wi[uθ]p = wi[vθ]p.

Therefore, for any assignment a ∈ [X→A] we have:

w aA =fA(w1aA, . . . , wi[uθ]paA, . . . , wnaA)=fA(w1aA, . . . , wi[vθ]paA, . . . , wnaA)= t′ aA

as desired. q.e.d.

This also concludes the proof of the Theorem. q.e.d.
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Exercises

Ex.10.1 For a subsignature Σ = ((S,≤), F ) ⊆ Σ′ = ((S,≤), F ′)

and A = (A, A) a Σ′-algebra, define its Σ-reduct A|Σ as the

Σ-algebra A|Σ = (A, A|F ). Prove that for any Σ-equation

u = v we have the equivalence:

A |= u = v ⇔ A|Σ |= u = v.

Ex.10.2 (i) Let h : A −→ B be a Σ-isomorphism, and u = v a

Σ-equation. Prove that

B |= u = v ⇔ A |= u = v.

(ii) Give an example of a bijective Σ-homomorphism h such

that the above equivalence does not hold (Hint: Consider

order-sorted signatures Σ that are not kind-complete).
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Exercises (II)

Ex.10.3 Call a Σ-algebra A a subalgebra of a Σ-algebra B iff

for each sort s ∈ S we have As ⊆ Bs, and the S-family of

inclusion functions j = {js : As −→ Bs}s∈S, with js : a 7→ a

mapping each element a ∈ As identically to itself is a

Σ-homomorphism j : A −→ B. We then write: A ⊆ B. Show

that if A ⊆ B, for any Σ-equation u = v we have:

B |= u = v ⇒ A |= u = v

Give an example showing that the implication in the other

direction in general does not hold.
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Exercises (II)

Ex.10.4 Let h : A −→ B be a surjective Σ-homomorphism,

and u = v a Σ-equation. Prove that

A |= u = v ⇒ B |= u = v

Show, by giving a counterexample, that the implication in

the other direction in general does not hold.
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