
Program Verification: Lecture 9

José Meseguer

Computer Science Department

University of Illinois at Urbana-Champaign

1



Unsorted Homomorphisms

Given unsorted Σ-algebras A = (A, A) and B = (B, B), a

Σ-homomorphism h from A to B, written h : A −→ B, is a

function h : A −→ B such that (with s the only sort) we

have:

• for each constant a : nil −→ s in Σ, h(aA) = aB

(preservation of constants)

• for each f : s n. . . s −→ s in Σ and each (a1, . . . , an) ∈ An,

we have h(fA(a1, . . . , an)) = fB(h(a1), . . . , h(an))

(preservation of operations)

2



Examples of Unsorted Homomorphisms

The term algebra TΣNAT-MIXFIX , the natural numbers IN, and

the natural numbers modulo n, INn (for any n ≥ 1) are all

ΣNAT-PREFIX-algebras (Lectures 2–3). Show that (for any

n) we have ΣNAT-PREFIX-homomorphisms:

TΣNAT-PREFIX
IN−→ IN

remn−→ INn

where IN evaluates a term to its value in IN, and remn sends

each number to its remainder after dividing by n. For

example, we should have:

• (s(0) + s(0))IN = 2, and

• rem7(23) = 2.

Show that IN; remn is also a homomorphism, and that we

have the identity IN; remn = INn
.

3



Examples of Unsorted Homomorphisms (II)

Recall (Lecture 2, pg. 30) the powerset algebra P(X) over

the Boolean signature ΣBOOL. Let X and Y be any sets,

and let f : X −→ Y be any function. Prove in detail that the

function

f−1 : P(Y ) −→ P(X)

defined for any A ⊆ Y by: f−1(A) = {x ∈ X | f(x) ∈ A}, is a

ΣBOOL-homomorphism. Prove also that if we also have a

function g : Y −→ Z, then we have the identity

(f ; g)−1 = g−1; f−1, and therefore that

g−1; f−1 : P(Z) −→ P(X) is also a ΣBOOL-homomorphism.

4



Many-Sorted Homomorphisms

Given (many-sorted) Σ-algebras A = (A, A) and B = (B, B),

a Σ-homomorphism h from A to B, written h : A −→ B, is an

S-indexed family of functions h = {hs : As −→ Bs}s∈S such

that:

• for each constant a : nil −→ s, hs(a
nil,s
A

) = a
nil,s
B

(preservation of constants)

• for each f : w −→ s with w = s1 . . . sn, n ≥ 1, and each

(a1, . . . , an) ∈ Aw, we have

hs(f
w,s
A

(a1, . . . , an)) = f
w,s
B

(hs1(a1), . . . , hsn(an))

(preservation of operations)

5



Examples of Many-Sorted Homomorphisms

Recall the module NAT-LIST in Lecture 2, and the two

algebras on such a signature, let us call them A and B,

defined on page 34–35 of Lecture 2, namely A = lists of

natural numbers and B = (finite) sets of natural numbers.

Show that there cannot be any ΣNAT-LIST-homomorphim

h : A −→ B.

For Σ the signature in picture 2.4, consider the first family

of algebras for it described in point 1, pages 35–36 of

Lecture 2, namely n-dimensional vector spaces on the

rational, the real, or the complex numbers. Let us be

specific and fix the reals. Let A be the 3-dimensional real

vector space, and B the 2-dimensional real vector space.

What is then a Σ-homomorphism h : A −→ B? Prove that

6



any such homomorphism h can be completely described by

a 2× 3 matrix Mh with real coefficients, so that applying to

a 3-dimensionsl vector ~v the homomorphims h, that is,

computing h(~v) exactly corresponds to computing the

matrix multiplication ~v ◦Mh. Generalize this to A and B real

vector spaces of arbitrary finite dimensions n and m.

Generalize it further to rational, resp. complex, vector

spaces of any pair of finite dimensions n and m.

Now generalize this even further to characterize by means

of matrices all Σ-homomorphims between Σ-algebras in

cases 2–7 in pages 36–38 of Lecture 2, where in case 7

(fuzzy sets) you sould restrict yourself to the fuzzy subsets

of finite sets. Give for each of these cases specific examples

of h : A −→ B showing how this works and how h is thus

applied to specific elements in the corresponding algebra A.

7



Order-Sorted Homomorphisms

For Σ = ((S,<), F ) an order-sorted signature, and A and B

order-sorted Σ-algebras, a Σ-homomorphism h from A to B,

written h : A −→ B, is an S-indexed family of functions

h = {hs : As −→ Bs}s∈S such that:

• h : A −→ B is a many-sorted (S, F )-homomorphism; and

• if [s] = [s′] and a ∈ As ∩As′, then hs(a) = hs′(a)

(agreement on data in the same connected component)

8



Examples of Order-Sorted Homomorphisms

Consider the order-sorted signature Σ of the NAT-LIST-II

exampe in Lecture 2, the two algebras on such a signature,

let us call them A and B, defined on page 40 of Lecture 2,

with A case (1), and B case (2). Show that there is exactly

one order-sorted Σ-homomorphim h : A −→ B. Describe

such a homomorphism h in complete detail. Show that

there cannot be any other Σ-homomorphims h′ : A −→ B

with h 6= h′.

9



Initiality of the Term Algebra

If a signature is sensible, then different terms denote

different things. In the argot of algebraic specifications, this

is expressed by saying that the term algebra has no

confusion.

Furthermore, the term algebra is in some sense minimal,

since it has only the elements it needs to have to be an

algebra: the constants, and the terms needed so that the

operations can yield a result; that is why this minimality is

expressed saying that it has no junk.

Note: In the rest of the course we will always assume that

all signatures are sensible.

10



Initiality of the Term Algebra (II)

This minimality means that there is at most one way to

map homomorphically the elements of TΣ to any algebra.

And its “no confusion” lack of ambiguity means that such

an homomorphic map can always be defined.

For example, it couldn’t be defined for Σ the non-sensible

signature we showed in pg. 4 of Lecture 3 and the

Σ-algebra K with: KA = {a}, KB = {b}, KC = {c},

KD = {d, d′}, and with fA,B(a) = b, fA,C(a) = c, gB,D(b) = d,

and gC,D(c) = d′. Indeed, there in no Σ-homomorphism

h : TΣ −→ K at all, since hD(g(f(a)) must be either d or d′. If

hD(g(f(a)) = d, then h fails to preserve the operation

g : C −→ D, and if hD(g(f(a)) = d′, then h fails to preserve

the operation g : B −→ D.

11



Initiality of the Term Algebra (III)

In summary, the claim is that, if Σ is sensible, then for any

Σ-algebra A there is a unique Σ-homomorphism, say,

A : TΣ −→ A. This is called the initiality property of TΣ.

The map A is the obvious evaluation function, mapping

each term t to the result of evaluating it in A. A is defined

inductively in the obvious way:

• for a constant a we define (a)A = aA, and

• for a term f(t1, . . . , tn) we define

(f(t1, . . . , tn))A = fA((t1)A, . . . , (tn)A).

Let us prove it in detail.

Theorem. If Σ is a sensible order-sorted signature, then TΣ

satisfies the initiality property.

12



Proof of the Initiality Theorem

Proof: For A any Σ-algebra Let us first prove the

uniqueness of A, and then its existence.

Proof of uniqueness. Let us suppose that we have two

different homomorphisms h, h′ : TΣ −→ A. We can prove that

h = h′ by induction on the depth of the terms.

For terms of depth 0 let a be a constant in TΣ,s. That

means that there is a sort s′ ≤ s with an operator

declaration a : nil −→ s′ and therefore, by h and h′ being

Σ-homomorphisms we must have hs(a) = h′
s(a) = a

nil,s′

A
.

13



Proof of the Initiality Theorem (II)

Assume that the equality h = h′ holds for terms of depth

less or equal to n, and let f(t1, . . . , tn) ∈ TΣ,s have depth

n+ 1. That means that there is an operator declaration

f : s1 . . . sn −→ s′ with s′ ≤ s and ti ∈ TΣ,si, 1 ≤ i ≤ n. Again,

by h and h′ being Σ-homomorphisms we must have:

hs(f(t1, . . . , tn)) =

= f
s1...sn,s

′

A
(hs1(t1), . . . , hsn(tn)) (h homomorphism and s ≤ s′)

= f
s1...sn,s

′

A
(h′

s1
(t1), . . . , h

′
sn
(tn)) (induction hypothesis)

= h′
s(f(t1, . . . , tn)) (h′ homomorphism and s ≤ s′).

14



Proof of the Initiality Theorem (III)

Proof of Existence. We can both define A and show that

it is a Σ-homomorphism by induction on the depth of terms.

For terms of depth 0, let a ∈ TΣ,s be a constant. That

means that there is a sort s′ ≤ s with an operator

declaration a : nil −→ s′; we then define (a)As
= a

nil,s′

A
.

Note that the constant a could be subsort-overloaded

(cannot be ad-hoc overloaded, since this is ruled out by Σ

being sensible) but the above assignment is well-defined

(does not depend on the particular declaration a : nil −→ s′

chosen), because by our definition of Σ-algebra the

interpretations of all subsort overloaded versions of a

constant a must coincide in the algebra A. Furthermore, A

preserves constants, so it is a Σ-homomorphism.

15



Proof of the Initiality Theorem (IV)

Assume that A has already been defined and is a

Σ-homomorphism for terms of depth less or equal to n, and

let f(t1, . . . , tn) ∈ TΣ,s be a term of depth n+ 1. That means

that there is an operator declaration f : s1 . . . sn −→ s′ with

s′ ≤ s and ti ∈ TΣ,si, 1 ≤ i ≤ n. We define

(f(t1, . . . , tn))A = f
s1...sn,s

′

A
((t1)A, . . . , (tn)A).

Note that, by the induction hypothesis, A has already been

defined for terms of depth less or equal to n and is a

Σ-homomorphism on those terms.

Note also that, by the Lemma on sensible signatures, for

any other f : s′1 . . . s
′
n −→ s′′ such that ti ∈ TΣ,s′

i
, 1 ≤ i ≤ n, we

must have, [si] = [s′i], 1 ≤ i ≤ n, and [s′] = [s′′].

16



Proof of the Initiality Theorem (V)

Since we have [si] = [s′i], 1 ≤ i ≤ n, by definition of

order-sorted Σ-homomorphism this then forces,

Asi
(ti) = A

s′

i

(ti), 1 ≤ i ≤ n.

Then, by our definition of Σ-algebra, all subsort overloaded
operators must agree on common data, so that we have,

f
s1...sn,s

′

A
((t1)A, . . . , (tn)A) = f

s
′

1
...s

′

n
,s

′′

A
((t1)A, . . . , (tn)A).

Therefore, the definition does not depend on the choice of

the subsort overloaded operator. As a consequence, the

extension of A to the step n+ 1 is well-defined and, by

construction, a Σ-homorphim, i.e., we have inductively

proved the existence of the Σ-homomorphism A. q.e.d.

17



More on Homomorphisms

Homomorphisms compose. That is, if h : A −→ B and

g : B −→ C are Σ-homomorphisms, then g ◦ h = {gs ◦ hs}s∈S is

a Σ-homomorphism g ◦ h : A −→ C (Ex.9.7).

Notation. The notation g ◦ h is the most common

mathematical notation for function composition and is good

to apply the composition to elements, since g ◦ h(x) = g(h(x))

but has the unfortunate drawback of reversing the order of

the arrows. Often we will use the alternative notation h; g

which is used for sequential composition in computer

science and keeps the order of the arrows.

Identities are homomorphisms. That is, given a Σ-algebra

A = (A, A), the family of identity functions idA = {idAs
} is a

Σ-homomorphim idA : A −→ A.

18



More on Homomorphisms (II)

A Σ-homomorphim h : A −→ B is called an isomorphim if

there is another Σ-homomorphism g : B −→ A such that

h; g = idA and g;h = idB. We then may use the notation

g = h−1 and h = g−1.

We call a Σ-homomorphism h : A −→ B

• injective (resp. surjective) if for each sort s ∈ S the

function hs is injective (resp. surjective)

• a monomorphism if for any pair of Σ-homomorphisms

g, q : C −→ A, if g;h = q;h then g = q

• an epimorphism if for any pair of Σ-homomorphisms

g, q : B −→ C, if h; g = h; q then g = q.

19



More on Homomorphisms (III)

For example, if Nbin, resp. Ndec, denote the natural

numbers with 0, successor, and addition in binary, resp.

decimal, representation, we have an obvious

binary-to-decimal isomorphism b2d : Nbin −→ Ndec preserving

all operations, whose inverse is the decimal-to-binary

isomorphism, d2b : Nbin −→ Ndec. Of course, d2b; b2d = idNdec
,

and b2d; d2b = idNbin
.

For Nn the residue classes modulo n, the reminder function

N
remn−→ Nn is a surjective homomorphism for Σ containing,

say, 0, 1, +, ×.

Similarly, for Zdec the integers in decimal notation, the

inclusion j : Ndec →֒ Zdec is an injective homomorphism

preserving all shared operations: 0, 1, +, ×, etc.

20



Theorem: All Initial Algebras Are Isomorphic

Proof: Suppose A and B are Σ-algebras and both satisfy

the initiality property of having a unique Σ-homomorphism

to any other algebra. In particular, we have unique

homomorphisms,

h : A −→ B g : B −→ A

and therefore a composed homomorphism

h; g : A −→ B −→ A

but we also have the identity homomorphism idA, which by

uniqeness forces h; g = idA. Interchanging the role of A and

B we also get, g;h = idB. q.e.d.

21



Evaluating Program Expressions

Q1: Can we model the evaluation of expressions in a

programming language using initial algebras?

A1: We first of all need a signature Σ of operations.

For example, Σ could be a signature for integer operations,

and/or Boolean operations, and/or real number operations

(typically using a floating point representation).

Assume a programming language in which we only have

integers and integer operations (note that we can encode

true and false as, respectively, 0 and 1). In this case Σ can

be unsorted and have two constants, 0 and 1, and three

binary function symbols: + , − , and ∗ .

22



Evaluating Program Expressions (II)

Q2: What else do we need?

A2: We need a set X of variables appearing on our

expressions. This means that we need to extend Σ to Σ(X),

so that our program expressions will be terms t ∈ TΣ(X).

Q3: And what else do we need if we want to evaluate such

expressions?

A3: We of course need a Σ-algebra in which they will be

evaluated. For integers expressions this is the algebra

Z = (Z, Z) of the integers with +, ∗,−, 0, 1.

23



Evaluating Program Expressions (III)

Q4: And what else do we need?

A4: Since expression evaluation depends on the memory

state, we need to model mathematically memory states.

Q5: And how can we model memory states?

A5: Assuming programs with just global variables, a

memory state for arithmetic expressions is just a function

m : X → Z. This is a special instance of the general notions

of an assignment of values to variables in an algebra.

24



Assignments

Given variables in X = {Xs} we will often be interested in

assignments (also called valuations) of data elements in a

given Σ-algebra A = (A, A) to those variables. Of course, if

x ∈ Xs then the value, say a(x), assigned to x should be an

element of As. That is the assignments should be

well-sorted. All this can be made precise by defining an

assignment as an S-indexed family of functions,

a = {as : Xs −→ As}s∈S, denoted a : X −→ A.

Often what we want to do with such assignments is to

extend them from variables to terms on such variables in

the obvious, homomorphic way.

25



Evaluating Program Expressions (VI)

Q6: Now that we have everything we need, how can

evaluation of arithmetic expressions be precisely defined

relative to a memory (state) m : X → Z?

A6: As a function (Z,m) : TΣ(X) → Z defined inductively by:

1. x(Z,m) = m(x) for x ∈ X

2. 0(Z,m) = 0 ∈ Z, 1(Z,m) = 1 ∈ Z

3. f(t, t′)(Z,m) = fZ(t(Z,m), t
′
(Z,m)) for f ∈ {+, ∗,−}.

26



Evaluating Program Expressions (VII)

Q7: Conditions (2)–(3) show that (Z,m) is a

Σ-homomorphism. What about condition (1)?

A7: Condition (1) plus (2)–(3) show that it is a

Σ(X)-homomorphism, when we extend the algebra Z of the

integers with the additional constants X, where each x ∈ X

is interpreted in Z as m(x). Denote this extended

Σ(X)-algebra (Z ,m). Then the evaluation of arithmetic

expressions is the unique Σ(X)-homomorphism:

(Z,m) : TΣ(X) → (Z ,m)

ensured by the initiality of TΣ(X). So we have modeled

expression evaluation as a homomorphism from TΣ(X) to the

Σ(X)-algebra (Z ,m) extending Z with memory m.

27



Exercises

Ex.9.1. Show that a homomorphism is injective iff it is a

monomorphism. Prove that every surjective homomorphism

is an epimorphism. Construct an epimorphism that is not

surjective.

Ex.9.2. Show that any many-sorted Σ-homomorphism that

is surjective and injective is an isomorphism.

Construct an order-sorted homomorphism that is surjective

and injective but is not an isomorphism. Give a sufficient

condition on the poset (S,≤) (more general of course than

being a discrete poset, since that is the many-sorted case)

so that h is an isomorphism iff h is surjective and injective.

28



Exercises (II)

Ex.9.3. Prove that if an algebra J is isomorphic to an

initial algebra I, then J itself is initial.

Ex.9.4. Show that the natural numbers in Peano notation

(zero and successor) and in base 2 are isomorphic

Σ-algebras (both initial) for Σ the signature with one sort

Natural and zero and successor operations.

29


