
Program Verification: Lecture 8

José Meseguer

Computer Science Department
University of Illinois at Urbana-Champaign

1



Termination

We need methods to check termination of an equational theory
(Σ, E). For unconditional equations E this means proving that the
rewriting relation −→E (or, more generally, −→E/B for (Σ, E ∪B))
is well-founded.

The key observation is that, if we exhibit a well-founded ordering >

on terms such that

(♣) t −→E t′ ⇒ t > t′,

then we have obviously proved termination, since nontermination of
−→E would make the order > non-well-founded.

2



Reduction Orderings

To show (♣) we need to consider an, infinite number of rewrites
t −→E t′. We would like to reduce this problem to checking (♣)
only for the equations in E. We need:

Definition: A well-founded ordering > on ∪s∈STΣ(V ) is called a
reduction ordering iff it satisfies the following two conditions:

• strict Σ-monotonicity: for each f ∈ Σ, whenever
f(t1, . . . , tn), f(t1, . . . , ti−1, t

′
i, ti+1, . . . , tn) ∈ TΣ(V ) with

ti > t′i, we have,

f(t1, . . . , tn) > f(t1, . . . , ti−1, t
′
i, ti+1, . . . , tn)

• closure under substitutuion: if t > t′, then, for any substitution
θ : V −→ TΣ(V ) we have, tθ > t′θ.

3



Reduction Orderings (II)

Theorem: Let (Σ, E) be an (unconditional) equational theory.
Then, E is terminating iff there exists a reduction order > such
that for each equation u = v in E we have, u > v.

Proof: The (⇒) part follows from the observation that, if E is
terminating, the transitive closure +−→E of the relation −→E is a
reduction order satisfying this requirement.

To see (⇐), it is enough to show that a reduction order with the
above property satisfies the implication (♣). Let t −→E t′ this
means that there is a position π in t, an equation u = v in E, and a
substitution θ such that t = t[π ← θ(u)], and t′ = t[π ← θ(v)]. But
by closure under substitution we have, θ(u) > θ(v) and by repeated
application of strict Σ-monotonicity we then have, t > t′. q.e.d.

4



Recursive Path Ordering (RPO)

The recursive path ordering (RPO) is based on the idea of giving
an ordering on the function symbols in Σ, which is then extended
to a reduction ordering on all terms. Since if Σ is finite the number
of possible orderings between function symbols in Σ is also finite,
checking whether a proof of termination exists this way can be
automated.

The intuitive idea that functions that are more complex should be
bigger in the ordering (for example: _*_ > _+_ > s) tends to work
quite well, and can yield a reduction ordering contaning the
equations. Furthermore each symbol f in Σ is given a status τ(f)

equal to either: τ(f) = lex (π) (lexicographic), or τ(f) = mult

(multiset). τ(f) indicates how the arguments of f should be
compared in the order.

5



RPO (II)

Given a finite signature Σ and an ordering > and a status function
τ on its symbols, the recursive path ordering >rpo on ∪s∈STΣ(V ) is
defined recursively as follows. u >rpo t iff:

u = f(u1, . . . , un), and either:

1. ui ≥rpo t for some 1 ≤ i ≤ n, or

2. t = g(t1, . . . , tm), u >rpo tj for all 1 ≤ j ≤ m, and either:

• f > g, or

• f = g and ⟨u1, . . . , un⟩ >τ(f)
rpo ⟨t1, . . . , tn⟩

where the extension of >rpo to an order >
τ(f)
rpo on lists of terms is

explained below.

6



RPO (III)

The extension of >rpo to an order >
τ(f)
rpo on lists of terms is defined

as follows:

• If f has n arguments and τ(f) = lex (π) with π a permutation
on n elements, then ⟨u1, . . . , un⟩ >τ(f)

rpo ⟨t1, . . . , tn⟩ iff there
exists i, 1 ≤ i ≤ n such that for j < i uπ(j) = tπ(j), and
uπ(i) > tπ(i).

• if τ(f) = mult , then ⟨u1, . . . , un⟩ >τ(f)
rpo ⟨t1, . . . , tn⟩ iff we have

{u1, . . . , un} >mult
rpo {t1, . . . , tn}

where, given any order > on a set A, it extension to an order >mult

on the set Mult(A) of multisets on A is the transitive closure of the
relation >mult

elt defined by M ∪ a >mult
elt M ∪ S iff (∀x ∈ S) a > x,

where S can be ∅.

7



RPO (IV)

It can be shown (for a detailed proof see the Terese book cited
later) that for a finite signature Σ RPO is a reduction order. We
can therefore use it to prove termination.

Consider for example the usual equations for natural number
addition: n+ 0 = n and n+ s(m) = s(n+m). We can prove that
they are terminating by using the RPO associated to the ordering
+ > s > 0 with τ(f) = lex (id) for each symbol f . Indeed, it is then
trivial to check that n+ 0 >rpo n and n+ s(m) >rpo s(n+m).

8



Termination Modulo Axioms

To prove that rewriting modulo axioms B are terminating, we need
a reduction order that is compatible with the axioms B. That is, if
u > t, u =B u′ and t =B t′, then we must always have u′ > t′. This
means that > defines also an order on the set, ∪s∈STΣ/B(X). For
example, RPO is compatible with commutativity axioms if we
specify τ(f) = mult for each commutative symbol f .

To make RPO compatible with associative and commutative
symbols it has been generalized to the AC.RPO order by a method
of flattening AC symbols. E.g., for f AC, f(f(a, b), f(c, d)) flattens
to f(a, b, c, d). AC.RPO can be further generalized to the
A ∨ C.RPO order, where some symbols can be associative and/or
commutative.

9



Proving Termination with A ∨ C.RPO

The Maude Termination Assistant (MTA) can prove termination
modulo A ∨ C axioms using an A ∨ C.RPO reduction order.

To prove a functional module FOO (preceded by: set include
BOOL off .) A ∨ C.RPO-terminating:

1. Choose a number nf for each f ∈ Σ (f > g iff nf > ng) using
Maude’s metadata attribute to specify nf and lex in FOO.

2. Load functional module FOO in Maude; then load mta.maude.

3. Give the command (check-AvCrpo FOO .) that will check
whether each u = v in FOO satisfies u >A∨C.rpo v. It will reply:
Module is terminating by AvC-RPO order or display those
u = v in FOO not provable with chosen order >.

MTA proves module LIST+MSET is AC.RPO-terminating:

10



Proving Termination with A ∨ C.RPO (II)
set include BOOL off .

fmod LIST+MSET is
sorts Element List MSet . subsorts Element < List .
subsorts Element < MSet .
op a : -> Element [ctor metadata "1"] .
op b : -> Element [ctor metadata "2"] .
op c : -> Element [ctor metadata "3"] .
op nil : -> List [ctor metadata "4"] .
op _;_ : List List -> List [metadata "5 lex(2 1)"] .
op _;_ : List Element -> List [ctor metadata "5 lex(2 1)"] .
op _,_ : MSet MSet -> MSet [ctor assoc comm metadata "4"] .
op null : -> MSet [ctor metadata "3"] .
op l2m : List -> MSet [ctor metadata "5"] .
vars L P Q : List . var M : MSet . var E : Element .
eq L ; (P ; Q) = (L ; P) ; Q . eq L ; nil = L .
eq nil ; L = L . eq M , null = M . eq l2m(nil) = null .
eq l2m(E) = E . eq l2m(L ; E) = l2m(L) , E .

endfm

11



Polynomial Orderings

Another general method of defining suitable reduction orderings is
based on polynomial orderings. In its simplest form we can just use
polynomials on several variables whose coefficients are natural
numbers. For example,

p = 7x3
1x2 + 4x2

2x3 + 6x2
3 + 5x1 + 2x2 + 11

is one such polynomial. Note that a polynomial p whose biggest
indexed variable is n (in the above example n = 3) defines a
function pN≥k

: Nn
≥k −→ N≥k (where k ≥ 3 and

N≥k = {n ∈ N | n ≥ k}), just by evaluating the polynomial on a
given tuple of numbers greater or equal to k. For p the polynomial
above we have for example, pN≥k

(3, 3, 3) = 383.

12



Polynomial Orderings (II)

Note also that we can order the set [Nn
≥k → N≥k] of functions from

Nn
≥k to N≥k by defining f > g iff for each (a1, . . . an) ∈ Nn

≥k

f(a1, . . . an) > g(a1, . . . an). Notice that this order is well-founded,
since if we have an infinite descending chain of functions

f1 > f2 > . . . fn > . . .

by choosing any (a1, . . . an) ∈ Nn
≥k we would get a descending chain

of positive numbers

f1(a1, . . . an) > f2(a1, . . . an) > . . . fn(a1, . . . an) > . . .

which is impossible.

13



Polynomial Orderings (III)

The method of polynomial orderings then consists in assigning to
each function symbol f : s1 . . . sn −→ s in Σ a polynomial pf
involving exactly the variables x1, . . . xn (all of them, and only
them must appear in pf ). If f is subsort overloaded, we assign the
same pf to all such overloadings. Also, to each constant symbol b
we likewise associate a positive number pb ∈ N≥k.

Suppose, to simplify notation, that in our set E of equations we
have used exactly m different variables, denoted x1, . . . xm, each
declared with its corresponding sort. Let us denote
X = {x1, . . . xm}. Then our assignment of a polynomial to each
function symbol and a number to each constant extends to a
function

14



Polynomial Orderings (IV)

p_ : TΣu(X) −→ N[X]

where Σu is the unsorted version of Σ, N[X] denotes the
polynomials with natural number coefficients in the variables X,
and where p_ is defined in the obvious, homomorphic way:

• pb = pb

• pxi
= xi

• pf(t1,...,tn) = pf{x1 7→ pt1 , . . . , xn 7→ ptn}

15



Polynomial Orderings (V)

Note that the the polynomial interpretation p induces a
well-founded ordering >p on the terms of TΣ(X) as follows:

t >p t′ ⇔ ptN≥k
> pt′N≥k

where if X = {x1, . . . xk}, we interpret ptN≥k
and pt′N≥k

as
functions in [Nm

≥k → N≥k]. The relation >p is clearly an irreflexive
and transitive relation on terms in TΣ(X) ⊆ TΣu(X), therefore a
strict ordering, and is clearly well-founded, because otherwise we
would have an infinite descending chain of polynomial functions in
[Nm

≥k → N≥k], which is impossible.

16



Polynomial Orderings (VI)

We now need to check that this ordering is furthermore: (i) strictly
Σ-monotonic, and (ii) closed under substitution. Condition (i)
follows easily from the fact that for each function symbol
f : s1 . . . sn −→ s in Σ pf involves exactly the variables x1, . . . xn

(pf does not drop any variables and all coefficients are non-zero).
Therefore, pfN≥k

, viewed as a function of n arguments, is strictly
monotonic in each of its arguments. Condition (ii) follows from the
following general property of the p_ function, which is left as an
excercise:

pt{x1 7→u1,...,xn 7→un} = pt{x1 7→ pu1 , . . . , xn 7→ pun}.

This then easily yields that if t >p t′ then
t{x1 7→ u1, . . . , xn 7→ un} >p t′{x1 7→ u1, . . . , xn 7→ un}, as desired.

17



Polynomial Orderings (VII)

Therefore, polynomial interpretations of this kind define reduction
orderings and can be used to prove termination. Consider for
example the single equation f(g(x)) = g(f(x)) in an unsorted
signature having also a constant a. Is this equation terminating?
We can prove that it is so by the following polynomial
interpretation:

• pf = x1
3

• pg = 2x1

• pa = 1

since we have the following strict inequality of functions:
((2x)3)N≥k

> (2(x3))N≥k
, showing that f(g(x)) >p g(f(x)).

18



Polynomial Termination Modulo Axioms

Some polynomial interpretations are compatible with certain
axioms. For example, a symmetric polynomial such that
p(x, y) = p(y, x) is compatible with commutativity and can
therefore be used to interpret a commutative symbol. For example,
2x+ 2y is symmetric. Similarly, a polynomial p(x, y) which is
symmetric (p(x, y) = p(y, x)) and furthermore satisfies the
associativity equation p(x, p(y, z)) = p(p(x, y), z) can be used to
interpret an associative-commutative symbol. As shown by
Bencheriffa and Lescanne the polynomials satisfying associativity
and commutativity axioms have a simple characterization: they
must be of the form axy + b(x+ y) + c with ac+ b− b2 = 0.

19



Proving Polynomial Termination with MTA

The MTA tool can be used to prove polynomial termination of a
module FOO using linear polynomials. That is, we associate to each
n-argument operator f ∈ Σ a linear polynomial of the form:

pf = a1x1 + . . .+ anxn + an+1

where ai ̸= 0 for 1 ≤ i ≤ n. For constants c ∈ Σ we require
pc = a1 ≥ 2.
Using the metadata attribute, we express each pf as the string
”a1 . . . an+1”.
To prove polynomial termination we: (1) load into Maude FOO with
metadata annotations; then load mta.maude; then (2) give the
command: (check-poly FOO .) MTA then replies with either
Module is terminating by polynomial order or the list of
equations failing the given order. Let us see an example:

20



Proving Polynomial Termination with MTA (II)
set include BOOL off .

fmod LIST+MSET is
sorts Element List MSet . subsorts Element < List .
subsorts Element < MSet .
op a : -> Element [ctor metadata "3"] .
op b : -> Element [ctor metadata "3"] .
op c : -> Element [ctor metadata "3"] .
op nil : -> List [ctor metadata "2"] .
op _;_ : List List -> List [metadata "2 1 1"] .
op _;_ : Element List -> List [ctor metadata "2 1 1"] .
op _,_ : MSet MSet -> MSet [ctor assoc comm metadata "1 1 1"] .
op null : -> MSet [ctor metadata "2"] .
op l2m : List -> MSet [ctor metadata "1 1"] .
vars L P Q : List . var M : MSet . var E : Element .
eq (L ; P) ; Q = L ; (P ; Q) . eq L ; nil = L .
eq nil ; L = L . eq M , null = M . eq l2m(nil) = null .
eq l2m(E) = E . eq l2m(E ; L) = E , l2m(L) .

endfm

21



Proving Polynomial Termination with MTA (III)

For an assoc comm (or assoc comm id:) symbol f , recall that the
corresponding polynomial pf must itself be assoc comm and
therefore must have the form: axy + b(x+ y) + c with
ac+ b− b2 = 0. But since in MTA pf must be linear, this forces
a = 0 and b = b2. Therefore, pf = 1x+ 1y + c. That is why we
have declared:

op _,_ : MSet MSet -> MSet [ctor assoc comm metadata "1 1 1"] .

Note that if f is only assoc (or assoc id:) it is OK for pf to be
assoc comm, since in particular pf is assoc. Therefore, for an
assoc symbol f we must also choose pf = 1x+ 1y + c.

Note: We do not need to worry about pf satisfying id: axioms:
MTT automatically generates a semantically equivalent module
where id: axioms become rules, so pf need only be assoc comm.

22



The MTT Tool

The Maude Termination Tool (MTT) is a tool that can be used to
prove the operational termination of Maude functional modules. In
general, such modules can be conditional and may be not just
order-sorted, but membership equational theories.

They may involve axioms like associativity and commutativity; and
they may also have evaluation strategies (see Maude 2.2 manual,
Section 4.4.7) indicating what arguments of a function symbol
should be evaluated before applying equations for that symbol. For
example, in an if_then_else_fi the first agument should be
evaluated before equations for it are applied; and in a “lazy list
cons” _;_ the first argument is evaluated, but not the second.

23



The MTT Tool (II)

Features such as sorts, subsorts, memberships, and evaluation
strategies may be essential for the termination of a Maude module.
That is, ignoring them may result in a nonterminating module.

To preserve these features somehow, while still allowing using
standard termination backend tools, the MTT implements the
transformations of (Σ, E) first into an unsorted conditional theory
(Σ◦, E◦), and then (Σ◦, E◦) is transformed into an unsorted
unconditional theory (Σ•, E•).

If the module declares evaluation strategies, they are also
transformed; but at the end evaluation strategies can either be used
directly by a termination tool like Mu-Term, or a further theory
transformation can eliminate such strategies.

24



The MTT Tool (III)

The course web page indicates where MTT has been installed. By
typing: ./MTT and carriage return the tool’s GUI comes up and the
user can interact with it. By using the File menu one can enter a
Maude module into the tool.

Once a Maude module (enclosed in parentheses, and not importing
any built-in modules) has been entered, the user can perform the
theory transformation (Σ, E) 7→ (Σ•, E•) in one of three
increasingly simpler modes: (1) Complete; (2) No Kinds; and (3)
No Sorts. In case (2) kinds are ignored; and in case (3) both kinds
and sorts are ignored. There is a tradeoff between simplicity of the
transformation and its tightness. Sometimes a simpler
transformation works better, and sometimes a more complete one is
essentially needed.

25



The MTT Tool (IV)

The choice of transformation can be made by clicking the
appropriate buttons (a screenshot will show this). But one also
needs to choose which backend termination tool for unsorted and
uncondional specifications will be used. One among the CiME,
MU-TERM, and AProVE termination tools can be chosen.

Then one can click on the Check bar to check the specification with
the chosen tool. Some of these tools offer choices for different
settings. So, we can try to prove termination using three different
transformation variants, and then with one of three backend tools,
sometimes customizing the particular tool choices. This maximizes
the chances of obtaining a successful termination proof.

26



The MTT Tool (V)

What the tool then demonstrates is that the original Maude
functional module is operationally terminating. The correctness of
such a proof is based on:

• the correctness of the theory transformations (see paper in
course web page); and

• the correctness of the chosen tools, that sometimes output a
justification of how they proved termination.

A screeshot of a tool interaction is given in the next page.

27



28



Termination is Undecidable

All the termination tools try to prove that a set of equations E,
conditional or unconditional, is terminating by applying different
proof methods; for example by trying to see if particular orderings
can be used to prove the equations terminating.

But these termination proof methods are not decision procedures:
in general termination of a set of equations (even if they are
unconditional) is undecidable . However, termination is decidable
for finite sets of unconditional equations E such that both the
lefthand and the righthand sides are ground terms, or even if just
the righthand sides are ground terms (see Chapter 5 in Baader and
Nipkow, “Term Rewriting and All That”, Cambridge U.P.).

29



Where to Go from Here

Besides RPO and polynomials there are various other orderings
and a general “dependency pairs” method that can be used to
prove termination. Good sources include:

TeReSe, “Term Rewriting Systems,” Cambridge U. P., 2003.

Baader and Nipkow, “Term Rewriting and All That”, Cambridge
U.P., 1998.

N. Dershowitz and J.-P. Jouannaud, “Rewrite Systems,” in J. van
Leeuwen, ed., “Handbook of Theoretical Computer Science,”
Elsevier, 1990.

E. Ohlebusch, “Advanced Topics in Term Rewriting Systems,”
Springer Verlag, 2002.

30


