Program Verification: Lecture 5

Program Verification: Lecture 5

José Meseguer

University of lllinois at Urbana-Champaign (USA)

1/1

Program Verification: Lecture 5

Executability Conditions

Given a rewrite theory (¥, B, R), which executabilty conditions
should be placed on the rules R to effectively use it for equational
simplification modulo B in the equational theory (X, B U eq(R)),
in which the rules t — t’ € R are now understood as equations

t =t €eq(R)?

We will see that there are essentially four conditions needed:

@ each t — t’ € R shoud be such that vars(t') C vars(t)

@ R is sort-decreasing

© R is confluent modulo B

Q R is terminating modulo B (highly desirable but not essential)

and will consider some variants of such conditions.

Program Verification: Lecture 5

No Extra Variables in Lefthand Sides

Consider the rule 0 — x * 0. This rule is problematic we have to
guess how to instantiate the variable x in x % 0 before applying it,
and there is an infinite number of instantiations.

Instead, the rule x x 0 — 0 can be applied without problems, since
the same substitution obtained by matching for the lefthand side
can be reused to generate the righhand side replacement.

Therefore, we should require:

(1) for each t — t' € R, any variable x occuring in t'
must also occur in t.

Program Verification: Lecture 5

Sort Decreasingness

A second important requirement is:

(2) sort-decreasingness: for eacht — t' € R, sort s € S,
and substitution 6 we should have t0 : s = t'0 : s.

Prove by well-founded induction on the context C below which a
rewrite C[tf] —r C[t'0] takes place, that under condition (2), if
u—rv,thenu:s = v:s.

To see why without sort-decreasingness things can go wrong, let X
have sorts C and D with C < D, a constant c of sort C, a
constant d of sort D, and a subsort-overloaded unary function
f:C—C,f:D— D. Let B=@ and
R={c—d,f(f(x:C))— f(x: C)}. With the second rule
f(f(c)) rewrites to f(c), and then to f(d) with the first rule. But
if we apply the first rule to 7(f(c)) we get (f(d)), which cannot
be further rewritten because sort information has béen lost!

Program Verification: Lecture 5

Checking Sort-Decreasingness

Sort decreasingness can be easily checked, since we do not need to
check it on the (infinite) set of all substitutions 6. If
{x1:51,...,%n:5p} = vars(t — t'), we only need to check it on
the (typically finite) set of substitutions of the form

{(x1 :s1,x1 1), ..., (X Spyxpp o sp)} with s <'s;, 1 <i<n,
called the sort specializations of the variables {x1 : s1,..., %, : Sp}.

For example, for sorts Nat < Set, with _U _ set union, the rule
x — x U x, with x : Set, is not sort-decreasing, since for the sort
specialization {(x : Set,x’ : Nat)} we have

Is(x") = Nat < Set = Is(x" U x").

Exercise. For ¥ preregular, prove that the rules R are sort
decreasing iff for each sort specialization p and for each t — t’ in
R we have: Is(tp) > Is(t'p).

Program Verification: Lecture 5

Determinism

A third requirement is determinism: if a term t is simplified by R
modulo B to two different terms v and v, and u #g v, then u and
v can always be further simplified by R modulo B to a common
term w.

This implies (Exercise!) that if t =% g vand t =%,z v, and u
and v cannot be further simplified by R modulo B, then we must
have u =g v. This is the idea of determinism: if rewriting with R
modulo B yields a fully simplified answer, then that answer must
be unique modulo B.

That is, the final result of a reduction with the rules R modulo B
should not depend on the particular order in which the rewrites
have been performed.

Program Verification: Lecture 5

Determinism = Confluence

Determinism is captured by: (3) confluence. The rules R of

(X, B, R) are confluent modulo B iff for each t € |J Tx(y),
whenever t —>*R/B u, t —>’};/B v, thereisa w e | Tz(y) such that
u —>’,§,/B w and v —>",‘?/B w. This can be described
diagrammatically (dashed arrows denote existential quantification):

“ e
Ak
R/B W *
We call R (3') ground confluent modulo B if the above is only
required for t € |J Ts.

Program Verification: Lecture 5

Joinability and the Church-Rosser Property

Call two terms t, t' € | Ts(y) joinable with R modulo B, denoted
tiR/B t/, iff (E|W € U Tz(y)) t —>7?/B w At _>T?/B w.

Execise. Prove that if (X, E U B) satisfies the conditions of an
order-sorted equational theory and the rules E are confluent
modulo B, then the following equivalence, called the
Church-Rosser property, holds for any two terms t,t’ € Ts(vy:

t=pupt & tlgpt.

where we abbreviate t iE/B t' tojust t Lg/p t'.

Program Verification: Lecture 5

Termination

It is highly desirable that rewriting with R modulo B terminates.

Definition

Let (X, B, R) be a rewrite theory. R is called terminating or
strongly normalizing modulo B iff —g,p is well-founded. R is
called weakly terminating or normalizing modulo B iff any

t € U Tx(y) has a R/B-normal form, i.e., Iv € |J Tx(y
t=k/B v/\ Aw el Ts(y)st. v —prmpw.

(Notation: t — 5 v).

Therefore, a highly desirable fourth requirement is:

(4) the rules R are terminating modulo B, or at least the
weaker requirement (4') that the rules R are (ground)
weakly terminating modulo B.

Program Verification: Lecture 5

Conditions on the Axioms B

10/1

Even with requirements (1)—(4) all satisfied, some further
requirements should be placed on axioms B so that they can be
effectively “built in.”

@ There shoud be a B-matching algorith, that is, and algorithm
such that, given X-terms t and t/, gives us a complete set of
substitutions @ such that td =g t', or fails if no such 6 exists.
If t0 =g t’' holds, we say that t’ B-matches the pattern t.

@ The variables in the axioms B should all be at the kind level,
i.e., of the form x : [s], for [s] a kind in (S, <), so that the
equations B apply in their fullest possible generality.

@ The equations B should be B-preregular, in the sense that,
given a B-equivalence class [t]g, the set
{se S|t €tlg A t':s} has a minimum element, denoted
is([t]s)-

(Maude automatically checks B-preregularity for B C ACU).

Program Verification: Lecture 5

The Canonical Term Algebra

11/1

Suppose (X, E & B) is oriented as the rewrite theory (¥, B, E) and
satisfies the executability conditions (1)—(4), or at least the slightly
weaker (1)—(2), and (3')—(4").

Then, every term t € | Ty can be simplified to a unique normal
form cang/p(t) modulo B, called its canonical form, so that

t H!E/BcanE/B(t)'
Furthermore, by the Church-Rosser property we have the following

extremely useful equivalence for any t,t' € |J Ty (resp.
t,t' € U Tx(y) if (¥, B, E) is confluent):

t =FwB t < t\l/E/B t < canE/B(t) =B canE/B(t’).

Therefore, to know if t, ¢’ are provably equal in (X, E W B), reduce
them to canonical form and test if cang,g(t) =g cang,g(t’),
which is decidable if B has a B-matching algorithm,

Program Verification: Lecture 5

The Canonical Term Algebra (I1)

12/1

This suggests considering the terms in E/B-canonical form as the
values of an algebra.

Consider the example of an unsorted signature ¥ with a constant
0, a unary successor function s, and a binary addition function
_+ _, and the equations: E = {x+0=x,x + s(y) = s(x + y)}.

It is easy to check that the term rewriting system (X, E) is
confluent and terminating. It is also easy to check that the set of
ground terms in E-canonical form is the set

Cans /e = {0,5(0),s(s(0)),...,s"(0),...}, that is the natural
numbers in Peano notation.

This is a set of values, but for which algebra? Well, we can agree
that the result of each operation on such values is, by definition, its
E /B-canonical form. This is what the Maude red command does!

Program Verification: Lecture 5

13/1

The Canonical Term Algebra (lII)

Here is the general definition:

Definition

Let (X, E W B) satisfy conditions (1)-(2), and (3')—(4’). Then the
S-indexed set Cany g g = {Cans /e g s}scs, where for each s € S
we define Cans /g g s = {[cang/s(t)]s € Tx,|s)/=B | t €
Ts sy A 3t' € [cang/p(t)]g, t' : s}, can be given a T-algebra
structure called the canonical term algebra associated to
(X, Ew B) and denoted Cs /g g = (Can):/EB,%;z/E’B), where the
structure map ¢ ¢ assigns to each f : w — s in X the function
sz/E,B : Cang’/l:-B — Cang /g p s defined:
o for w = nil, by f¢, . , = cang/g(f), and
@ for w =sy...s,, n>1, by the function

be/E,B -)\([tl]B’ ttt [tn]B) e

Can):/E,B,s1 X ... X Canz/Evgvsn. [canE/B(f(tl, boog tn))]B-

Program Verification: Lecture 5

14/1

The Idea of Sufficient Completeness

Consider the equations £ = {x +0 = x,x + s(y) = s(x + y)} and
observe that the set Cany g is precisely the set Tp, of terms in
the signature X p; with symbols 0 and s. That is, the addition
symbol has completely disappered! This is as it should be, since
the equations E = {x +0 = x,x + s(y) = s(x + y)} provide a
complete definition of the addition function on natural numbers.
Note that we have a strict inclusion X p; C X.

In general, if (X, E W B) satisfies (1)—(2) and (3')—(4’), we can use
operations in a subsignature Q C ¥ as data constructors, so that
the remaning operations in ¥ — € are functions operating on data
built with the data constructors €2 and returning as result another
data value built with the constructors 2.

The functions f € ¥ — Q are then completely defined if for each
t € J T, we have cang/g(t) € U Ta.

Program Verification: Lecture 5

Subsignatures

Before defining sufficient completeness we need to make more
precise the notion of subsignature.

Definition

An order-sorted signature Q = ((S', <’), G) is called a subsignature

of an order-soted signature ¥ = ((S, <), F), denoted Q C ¥, iff:
Q@ S'C S and <'C<, and

@ for each (w/,s’) € §" x S’ there is a subset inclusion
Gw',s» € Fu s, which we abbreviate with the notation G C F.

’

15/1

Program Verification: Lecture 5

Sufficient Completeness Defined

Definition

Let (X, B, R) be a rewrite theory that is weakly ground
terminating, and let Q C ¥ be a subsignature inclusion where Q
has the same poset of sorts as ¥, that is, ¥ = ((S, <), F),
Q=((5,<),G), and G C F. We say that the rules R are
sufficiently complete modulo B with respect to the constructor
subsignature € iff for each s € S and each t € Ty s there is a
t' € Tqs such that t —>‘R/B t.

16/1

Program Verification: Lecture 5

More on Sufficient Completeness

If ¥ is kind-complete, then the above requirement that for each

t € Ty s thereis a t’ € Tq s such that t _>E‘?/B t’ should apply
only to the sorts s € [s] in each connected component, but not to
the kinds [s]. l.e., the sufficient completeness for R modulo B
should required for a signature ¥ before kind-completing it to X.

This is because, since terms that have a kind [s] but not a sort s,
correspond to undefined or error expressions, such as p(0) for p the
predecessor function on natural numbers, it is perfectly possible
that a completely well-defined function on the right sorts cannot
be simplified away when applied to arguments of wrong sorts.

17/1

Program Verification: Lecture 5

More on Sufficient Completeness (II)

If (X,B,E) has Q C ¥ as a constructor subsignature with E
confluent and weakly terminating modulo B, we say that the
constructors 2 are free modulo B in (¥, B, E) iff for each sort s
which is not a kind we have Cans /g gs = Tq/B.s-

Therefore, if we have identified for our rewrite theory (X, B, R) a
subsignature of Q of constructors, a fifth and last requirement
should be:

(5) the rules R are sufficiently complete modulo B.

18/1

Program Verification: Lecture 5

Examples of Sufficient Completeness Modulo B

For example, consider the reverse function in the list module

fmod MY-LIST is protecting NAT .

sorts NeList List .

subsorts Nat < NeList < List .

op _;_ : List List -> List [assoc]

op _;_ : NeList NeList -> NeList [assoc ctor]

op nil : -> List [ctor]

op rev : List -> List .

eq rev(nil) = nil .

eq rev(N:Nat ; L:List) = rev(L:List) ; N:Nat .
endfm

Are nil and _;_ (plus 0 and s) really the constructors of this
module as claimed?

19/1

Program Verification: Lecture 5

20/1

Examples of Sufficient Completeness Modulo B (1)

The answer is that they are not, as witnessed by:

Maude> red rev(7) .

reduce in MY-LIST : rev(7) .

rewrites: O in Oms cpu (Oms real) (~ rewrites/second)
result List: rev(7)

The problem is that the above two equations would have been
sufficient if we had also declared the id: nil attribute for _;_ but
do not fully define rev if only the assoc attribute is used.

In future lectures we shall see how sufficient completness can be
automatically checked under reasonable assumptions.

Program Verification: Lecture 5

Examples of Sufficient Completeness Modulo B (111)

So, suppose we add an extra equation for rev

fmod MY-LIST is protecting NAT .

sorts NeList List .

subsorts Nat < NeList < List .

op _;_ : List List -> List [assoc]

op _;_ : NeList NeList -> NeList [assoc ctor]

op nil : -> List [ctor]

op rev : List -> List .

eq rev(nil) = nil .

eq rev(N:Nat) = N:Nat .

eq rev(N:Nat ; L:List) = rev(L:List) ; N:Nat .
endfm

Is now this module sufficiently complete?

21/1

Program Verification: Lecture 5

Examples of Sufficient Completeness Modulo B (1V)

Indeed we now have

Maude> red rev(7) .
reduce in MY-LIS

But it is still not sufficiently complete, since

Maude> red nil ; 7 .
reduce in MY-LIST : nil ; 7 .
result List: nil ; 7

is not a constructor term, since _;_ is a constructor on NeList but
a defined function on List.

22/1

Program Verification: Lecture 5

Examples of Sufficient Completeness Modulo B (V)

The really sufficiently complete specification, making the
constructors free modulo assoc, is

fmod MY-LIST is protecting NAT . sorts NeList List .
subsorts Nat < NeList < List .
op _;_ : List List -> List [assoc]
op _;_ : NeList NeList -> NeList [assoc ctor]
op nil : -> List [ctor]
op rev : List -> List .
eq rev(nil) = nil .
eq rev(N:Nat) = N:Nat .
eq rev(N:Nat ; L:List) = rev(L:List) ; N:Nat .
eq nil ; L:List = L:List .
eq L:List ; nil = L:List .
endfm

Maude> red nil ; 7 .

reduce in MY-LIST : nil ; 7 .
result NzNat: 7

23/1

Program Verification: Lecture 5

Examples of Sufficient Completeness Modulo B (V1)

The following example shows an equational theory whose
constructors are not free.

fmod NAT/3 is
sorts Nat .
op O : -> Nat [ctor] .
op s : Nat -> Nat [ctor] .
op _+_ : Nat Nat -> Nat .
vars N M : Nat .

eq N+ 0=0N.

eq N+ s(M) = s(N+M .

eq s(s(s(0))) =0 .
endfm

24/1

