
Program Verification: Lecture 5

Program Verification: Lecture 5

José Meseguer

University of Illinois at Urbana-Champaign (USA)

1/1

Program Verification: Lecture 5

Executability Conditions

Given a rewrite theory (Σ,B,R), which executabilty conditions
should be placed on the rules R to effectively use it for equational
simplification modulo B in the equational theory (Σ,B ∪ eq(R)),
in which the rules t → t ′ ∈ R are now understood as equations
t = t ′ ∈ eq(R)?

We will see that there are essentially four conditions needed:

1 each t → t ′ ∈ R shoud be such that vars(t ′) ⊆ vars(t)

2 R is sort-decreasing

3 R is confluent modulo B

4 R is terminating modulo B (highly desirable but not essential)

and will consider some variants of such conditions.

2/1

Program Verification: Lecture 5

No Extra Variables in Lefthand Sides

Consider the rule 0→ x ∗ 0. This rule is problematic we have to
guess how to instantiate the variable x in x ∗ 0 before applying it,
and there is an infinite number of instantiations.

Instead, the rule x ∗ 0→ 0 can be applied without problems, since
the same substitution obtained by matching for the lefthand side
can be reused to generate the righhand side replacement.

Therefore, we should require:

(1) for each t → t ′ ∈ R, any variable x occuring in t ′

must also occur in t.

3/1

Program Verification: Lecture 5

Sort Decreasingness

A second important requirement is:

(2) sort-decreasingness: for each t → t ′ ∈ R, sort s ∈ S,
and substitution θ we should have tθ : s ⇒ t ′θ : s.

Prove by well-founded induction on the context C below which a
rewrite C [tθ]→R C [t ′θ] takes place, that under condition (2), if
u →R v , then u : s ⇒ v : s.

To see why without sort-decreasingness things can go wrong, let Σ
have sorts C and D with C < D, a constant c of sort C , a
constant d of sort D, and a subsort-overloaded unary function
f : C −→ C , f : D −→ D. Let B = ∅ and
R = {c → d , f (f (x : C))→ f (x : C)}. With the second rule
f (f (c)) rewrites to f (c), and then to f (d) with the first rule. But
if we apply the first rule to f (f (c)) we get f (f (d)), which cannot
be further rewritten because sort information has been lost!

4/1

Program Verification: Lecture 5

Checking Sort-Decreasingness

Sort decreasingness can be easily checked, since we do not need to
check it on the (infinite) set of all substitutions θ. If
{x1 : s1, . . . , xn : sn} = vars(t → t ′), we only need to check it on
the (typically finite) set of substitutions of the form
{(x1 : s1, x

′
1 : s ′1), . . . , (xn : sn, x

′
n : s ′n)} with s ′i ≤ si , 1 ≤ i ≤ n,

called the sort specializations of the variables {x1 : s1, . . . , xn : sn}.

For example, for sorts Nat < Set, with ∪ set union, the rule
x → x ∪ x , with x : Set, is not sort-decreasing, since for the sort
specialization {(x : Set, x ′ : Nat)} we have
ls(x ′) = Nat < Set = ls(x ′ ∪ x ′).

Exercise. For Σ preregular, prove that the rules R are sort
decreasing iff for each sort specialization ρ and for each t → t ′ in
R we have: ls(tρ) ≥ ls(t ′ρ).

5/1

Program Verification: Lecture 5

Determinism

A third requirement is determinism: if a term t is simplified by R
modulo B to two different terms u and v , and u 6=B v , then u and
v can always be further simplified by R modulo B to a common
term w .

This implies (Exercise!) that if t →∗R/B u and t →∗R/B v , and u
and v cannot be further simplified by R modulo B, then we must
have u =B v . This is the idea of determinism: if rewriting with R
modulo B yields a fully simplified answer, then that answer must
be unique modulo B.

That is, the final result of a reduction with the rules R modulo B
should not depend on the particular order in which the rewrites
have been performed.

6/1

Program Verification: Lecture 5

Determinism = Confluence

Determinism is captured by: (3) confluence. The rules R of
(Σ,B,R) are confluent modulo B iff for each t ∈

⋃
TΣ(Y),

whenever t →∗R/B u, t →∗R/B v , there is a w ∈
⋃

TΣ(Y) such that
u →∗R/B w and v →∗R/B w . This can be described

diagrammatically (dashed arrows denote existential quantification):

t

∗
R/B ~~}}

}}
}}
}}

∗
R/B
 A

AA
AA

AA
A

u

∗
R/B

v

∗
R/B
~~

w

We call R (3′) ground confluent modulo B if the above is only
required for t ∈

⋃
TΣ.

7/1

Program Verification: Lecture 5

Joinability and the Church-Rosser Property

Call two terms t, t ′ ∈
⋃
TΣ(Y) joinable with R modulo B, denoted

t ↓R/B t ′, iff (∃w ∈
⋃

TΣ(Y)) t →∗R/B w ∧ t ′ →∗R/B w .

Execise. Prove that if (Σ,E ∪ B) satisfies the conditions of an
order-sorted equational theory and the rules ~E are confluent
modulo B, then the following equivalence, called the
Church-Rosser property, holds for any two terms t, t ′ ∈ TΣ(Y):

t =E∪B t ′ ⇔ t ↓E/B t ′.

where we abbreviate t ↓~E/B
t ′ to just t ↓E/B t ′.

8/1

Program Verification: Lecture 5

Termination

It is highly desirable that rewriting with R modulo B terminates.

Definition

Let (Σ,B,R) be a rewrite theory. R is called terminating or
strongly normalizing modulo B iff →R/B is well-founded. R is
called weakly terminating or normalizing modulo B iff any
t ∈

⋃
TΣ(Y) has a R/B-normal form, i.e., ∃v ∈

⋃
TΣ(Y) s.t.

t →∗R/B v ∧ 6 ∃w ∈
⋃
TΣ(Y) s.t. v →R/B w .

(Notation: t →!
R/B v).

Therefore, a highly desirable fourth requirement is:

(4) the rules R are terminating modulo B, or at least the
weaker requirement (4′) that the rules R are (ground)
weakly terminating modulo B.

9/1

Program Verification: Lecture 5

Conditions on the Axioms B

Even with requirements (1)–(4) all satisfied, some further
requirements should be placed on axioms B so that they can be
effectively “built in.”

There shoud be a B-matching algorith, that is, and algorithm
such that, given Σ-terms t and t ′, gives us a complete set of
substitutions θ such that tθ =B t ′, or fails if no such θ exists.
If tθ =B t ′ holds, we say that t ′ B-matches the pattern t.
The variables in the axioms B should all be at the kind level,
i.e., of the form x : [s], for [s] a kind in (S , <), so that the
equations B apply in their fullest possible generality.
The equations B should be B-preregular, in the sense that,
given a B-equivalence class [t]B , the set
{s ∈ S | t ′ ∈ [t]B ∧ t ′ : s} has a minimum element, denoted
ls([t]B).
(Maude automatically checks B-preregularity for B ⊆ ACU).

10/1

Program Verification: Lecture 5

The Canonical Term Algebra

Suppose (Σ,E] B) is oriented as the rewrite theory (Σ,B, ~E) and
satisfies the executability conditions (1)–(4), or at least the slightly
weaker (1)–(2), and (3’)–(4’).

Then, every term t ∈
⋃
TΣ can be simplified to a unique normal

form canE/B(t) modulo B, called its canonical form, so that
t →!E/BcanE/B(t).

Furthermore, by the Church-Rosser property we have the following
extremely useful equivalence for any t, t ′ ∈

⋃
TΣ (resp.

t, t ′ ∈
⋃
TΣ(Y) if (Σ,B, ~E) is confluent):

t =E]B t ′ ⇔ t ↓E/B t ′ ⇔ canE/B(t) =B canE/B(t ′).

Therefore, to know if t, t ′ are provably equal in (Σ,E] B), reduce
them to canonical form and test if canE/B(t) =B canE/B(t ′),
which is decidable if B has a B-matching algorithm.

11/1

Program Verification: Lecture 5

The Canonical Term Algebra (II)

This suggests considering the terms in E/B-canonical form as the
values of an algebra.

Consider the example of an unsorted signature Σ with a constant
0, a unary successor function s, and a binary addition function

+ , and the equations: E = {x + 0 = x , x + s(y) = s(x + y)}.

It is easy to check that the term rewriting system (Σ, ~E) is
confluent and terminating. It is also easy to check that the set of
ground terms in ~E -canonical form is the set
CanΣ/E = {0, s(0), s(s(0)), . . . , sn(0), . . .}, that is the natural
numbers in Peano notation.

This is a set of values, but for which algebra? Well, we can agree
that the result of each operation on such values is, by definition, its
E/B-canonical form. This is what the Maude red command does!

12/1

Program Verification: Lecture 5

The Canonical Term Algebra (III)

Here is the general definition:

Definition

Let (Σ,E] B) satisfy conditions (1)–(2), and (3′)–(4′). Then the
S-indexed set CanΣ/E ,B = {CanΣ/E ,B,s}s∈S , where for each s ∈ S
we define CanΣ/E ,B,s = {[canE/B(t)]B ∈ TΣ,[s]/=B | t ∈
TΣ,[s] ∧ ∃t ′ ∈ [canE/B(t)]B , t

′ : s}, can be given a Σ-algebra
structure called the canonical term algebra associated to
(Σ,E] B) and denoted CΣ/E ,B = (CanΣ/E ,B , CΣ/E ,B

), where the
structure map CΣ/E ,B

assigns to each f : w −→ s in Σ the function
fCΣ/E ,B

: CanwΣ/E ,B −→ CanΣ/E ,B,s defined:

for w = nil , by fCΣ/E ,B
= canE/B(f), and

for w = s1 . . . sn, n ≥ 1, by the function
fCΣ/E ,B

= λ([t1]B , . . . , [tn]B) ∈
CanΣ/E ,B,s1

× . . .× CanΣ/E ,B,sn . [canE/B(f (t1, . . . , tn))]B .

13/1

Program Verification: Lecture 5

The Idea of Sufficient Completeness

Consider the equations E = {x + 0 = x , x + s(y) = s(x + y)} and
observe that the set CanΣ/E is precisely the set TDL of terms in
the signature ΣDL with symbols 0 and s. That is, the addition
symbol has completely disappered! This is as it should be, since
the equations E = {x + 0 = x , x + s(y) = s(x + y)} provide a
complete definition of the addition function on natural numbers.
Note that we have a strict inclusion ΣDL ⊂ Σ.

In general, if (Σ,E] B) satisfies (1)–(2) and (3′)–(4′), we can use
operations in a subsignature Ω ⊆ Σ as data constructors, so that
the remaning operations in Σ− Ω are functions operating on data
built with the data constructors Ω and returning as result another
data value built with the constructors Ω.

The functions f ∈ Σ− Ω are then completely defined if for each
t ∈

⋃
TΣ, we have canE/B(t) ∈

⋃
TΩ.

14/1

Program Verification: Lecture 5

Subsignatures

Before defining sufficient completeness we need to make more
precise the notion of subsignature.

Definition

An order-sorted signature Ω = ((S ′, <′),G) is called a subsignature
of an order-soted signature Σ = ((S , <),F), denoted Ω ⊆ Σ, iff:

1 S ′ ⊆ S and <′⊆<, and

2 for each (w ′, s ′) ∈ S ′∗ × S ′ there is a subset inclusion
Gw ′,s′ ⊆ Fw ′,s′ , which we abbreviate with the notation G ⊆ F .

15/1

Program Verification: Lecture 5

Sufficient Completeness Defined

Definition

Let (Σ,B,R) be a rewrite theory that is weakly ground
terminating, and let Ω ⊆ Σ be a subsignature inclusion where Ω
has the same poset of sorts as Σ, that is, Σ = ((S , <),F),
Ω = ((S , <),G), and G ⊆ F . We say that the rules R are
sufficiently complete modulo B with respect to the constructor
subsignature Ω iff for each s ∈ S and each t ∈ TΣ,s there is a
t ′ ∈ TΩ,s such that t →!

R/B t ′.

16/1

Program Verification: Lecture 5

More on Sufficient Completeness

If Σ is kind-complete, then the above requirement that for each
t ∈ TΣ,s there is a t ′ ∈ TΩ,s such that t →!

R/B t ′ should apply

only to the sorts s ∈ [s] in each connected component, but not to
the kinds [s]. I.e., the sufficient completeness for R modulo B
should required for a signature Σ before kind-completing it to Σ̂.

This is because, since terms that have a kind [s] but not a sort s,
correspond to undefined or error expressions, such as p(0) for p the
predecessor function on natural numbers, it is perfectly possible
that a completely well-defined function on the right sorts cannot
be simplified away when applied to arguments of wrong sorts.

17/1

Program Verification: Lecture 5

More on Sufficient Completeness (II)

If (Σ,B,E) has Ω ⊆ Σ as a constructor subsignature with E
confluent and weakly terminating modulo B, we say that the
constructors Ω are free modulo B in (Σ,B,E) iff for each sort s
which is not a kind we have CanΣ/E ,B,s = TΩ/B,s .

Therefore, if we have identified for our rewrite theory (Σ,B,R) a
subsignature of Ω of constructors, a fifth and last requirement
should be:

(5) the rules R are sufficiently complete modulo B.

18/1

Program Verification: Lecture 5

Examples of Sufficient Completeness Modulo B

For example, consider the reverse function in the list module

fmod MY-LIST is protecting NAT .

sorts NeList List .

subsorts Nat < NeList < List .

op _;_ : List List -> List [assoc] .

op _;_ : NeList NeList -> NeList [assoc ctor] .

op nil : -> List [ctor] .

op rev : List -> List .

eq rev(nil) = nil .

eq rev(N:Nat ; L:List) = rev(L:List) ; N:Nat .

endfm

Are nil and ; (plus 0 and s) really the constructors of this
module as claimed?

19/1

Program Verification: Lecture 5

Examples of Sufficient Completeness Modulo B (II)

The answer is that they are not, as witnessed by:

Maude> red rev(7) .

reduce in MY-LIST : rev(7) .

rewrites: 0 in 0ms cpu (0ms real) (~ rewrites/second)

result List: rev(7)

The problem is that the above two equations would have been
sufficient if we had also declared the id: nil attribute for ; but
do not fully define rev if only the assoc attribute is used.

In future lectures we shall see how sufficient completness can be
automatically checked under reasonable assumptions.

20/1

Program Verification: Lecture 5

Examples of Sufficient Completeness Modulo B (III)

So, suppose we add an extra equation for rev

fmod MY-LIST is protecting NAT .

sorts NeList List .

subsorts Nat < NeList < List .

op _;_ : List List -> List [assoc] .

op _;_ : NeList NeList -> NeList [assoc ctor] .

op nil : -> List [ctor] .

op rev : List -> List .

eq rev(nil) = nil .

eq rev(N:Nat) = N:Nat .

eq rev(N:Nat ; L:List) = rev(L:List) ; N:Nat .

endfm

Is now this module sufficiently complete?

21/1

Program Verification: Lecture 5

Examples of Sufficient Completeness Modulo B (IV)

Indeed we now have

Maude> red rev(7) .

reduce in MY-LIS

But it is still not sufficiently complete, since

Maude> red nil ; 7 .

reduce in MY-LIST : nil ; 7 .

result List: nil ; 7

is not a constructor term, since ; is a constructor on NeList but
a defined function on List.

22/1

Program Verification: Lecture 5

Examples of Sufficient Completeness Modulo B (V)

The really sufficiently complete specification, making the
constructors free modulo assoc, is

fmod MY-LIST is protecting NAT . sorts NeList List .

subsorts Nat < NeList < List .

op _;_ : List List -> List [assoc] .

op _;_ : NeList NeList -> NeList [assoc ctor] .

op nil : -> List [ctor] .

op rev : List -> List .

eq rev(nil) = nil .

eq rev(N:Nat) = N:Nat .

eq rev(N:Nat ; L:List) = rev(L:List) ; N:Nat .

eq nil ; L:List = L:List .

eq L:List ; nil = L:List .

endfm

Maude> red nil ; 7 .

reduce in MY-LIST : nil ; 7 .

result NzNat: 7

23/1

Program Verification: Lecture 5

Examples of Sufficient Completeness Modulo B (VI)

The following example shows an equational theory whose
constructors are not free.

fmod NAT/3 is

sorts Nat .

op 0 : -> Nat [ctor] .

op s : Nat -> Nat [ctor] .

op _+_ : Nat Nat -> Nat .

vars N M : Nat .

eq N + 0 = N .

eq N + s(M) = s(N + M) .

eq s(s(s(0))) = 0 .

endfm

24/1

