José Meseguer

Computer Science Department
University of Illinois at Urbana-Champaign

LTL Verification of Declarative Concurrent Programs

Proving that a Maude system module satisfies a property ¢ means

proving that the corresponding initial model does:

Tr E .

We have seen how to do this for invariants. But properties that
talk about infinite behavior (e.g., fairness) require a richer logic,
such as Linear Temporal Logic (LTL). Because in LTL we have a
“next” operator () which talks not just about what is reachable in
general, but what is reachable in one step, we will need a tighter
notion of model than 7x. This is provided by the Kripke structure
IC(R, k)1 associated to the rewrite theory R with state predicates
II. So our satisfaction problem will be recast as:

K(R, k), [t] = ¢.

| The Syntax of LTL(AP)]

Given a set AP of atomic propositions, we define the formulae of

the propositional linear temporal logic LT L(AP) inductively as

follows:

True: T € LTL(AP).

Atomic propositions: If p € AP, then p € LT L(AP).

Next operator: If p € LT L(AP), then Oy € LTL(AP).
Until operator: If ¢, € LTL(AP), then o U b € LTL(AP).

Boolean connectives: If ¢, € LTL(AP), then the formulae
-, and ¢ V ¢ are in LT L(AP).

The Syntax of LT L(AP) (II)

Other LTL connectives can be defined in terms of the above

minimal set of connectives as follows:

e Other Boolean connectives:
o False: 1 =-T
o Conjunction: @AY = —((—¢)V (7))

o Implication: ¢ — 1 = (—p) V .

e Other temporal operators:

O

©)

Eventually: Gp=TU @

Henceforth: Op = O

Release: ¢ R ¢ = —~((—p) U (—v))
Unless: o W = (U) V (Op)
Leads-to: ¢~ ¢ =0O(p — (o))
Strong implication: ¢ = ¥ = O(p — ¥)

Strong equivalence: ¢ < ¥ = O(p <> ¥).

Kripke Structures

Kripke structures are the natural models for propositional temporal
logic. Essentially, a Kripke structure is a (total) unlabeled
transition system to which we have added a collection of unary

state predicates on its set of states.

A binary relation R C A x A on a set A is called total iff for each
a € A there is at least one a’ € A such that (a,a’) € R. If R is not
total, it can be made total by defining

R* = RU{(a,a) € A% |Ad’ € A (a,d’) € R}.

Kripke Structures (II)

A Kripke structure is a triple A = (A, — 4, L) such that A is a set,
called the set of states, — 4 is a total binary relation on A, called
the transition relation, and L : A — P(AP) is a function, called
the labeling function, associating to each state a € A the set L(a)
of those atomic propositions in AP that hold in the state a.

How can we associate a Kripke structure to a rewrite theory

R = (3, E, ¢, R)? We just need to make explicit two things: (1) the
intended kind k of states in the signature X; and (2) the relevant
state predicates, that is, the relevant set AP of atomic
propositions. Having fixed k, our associated Kripke structure has
as set of states those of kind k in the initial model, that is, Ty /E.

[Kripke Structures (III)]

The corresponding transition relation will the totalization (—7,)®
of the one-step rewrite relation %%Q on T/ g i, where, by
definition, [t] —1, [t'] iff there are terms u € [t] and v’ € [¢'] and a
proof R ' w —3, u’ (see Lecture 17).

If 'R satisfies the usual executability requirements we have an
isomorphism 7Tz = Cr and our desired Kripke structure has a much
more intiuitive equivalent representation: its set of states is the set
of canonical terms C /g 1, and its transition relation is the
totalization (—¢_)*® of the one-step transition relation —5_ defined

in Lecture 17.

We will explain later in this lecture how the remaining part of the
Kripke structure, namely the labeling function specifying the state

predicates, can also be defined.

The Semantics of LT L(AP)

The semantics of the temporal logic LTL is defined by means of a

satisfaction relation
A a =

between a Kripke structure A having AP as its atomic
propositions, a state a € A, and an LTL formula ¢ € LTL(AP).
Specifically, A, a = ¢ holds iff for each path = € Path(A), the path
satisfaction relation

Avﬂ- |:90

holds, where we define the set Path(.A) of computation paths as
the set of functions of the form 7 : IN — A such that for each
n € IN, we have m(n) —4 m(n + 1) and define

Path(A), = {m € Path(A) | 7(0) = a}.

| The Semantics of LTL(AP) (I1)]

In turn we define the path satisfaction relation A, 7 = ¢ in terms
of the trace satisfaction relation 7 = ¢, where a trace 7 is a
function 7 € [IN — P(AP)], that is, 7 is a sequence:

7(0), 7(1), 7(2), ... 7(n), ..., with each 7(i) C AP a subset of
atomic propositions. We then define A, 7 = ¢ in terms of trace

satisfaction by the equivalence:
ArTEp & mLiE e

That is, we associate to the path 7 in A the trace m; L 4, and then
check whether ¢ is satisfied for that trace. Note the interesting fact
that, thanks to the last equivalence, the Kripke structure A has
dissappeared from the picture! That is, satisfaction is now defined
exclusively in terms of traces in the function set [IN — P(AP)| with
no reference to A.

10

| The Semantics of LTL(AP) (III) |

Finally, we inductively define the trace satisfaction relation for any
trace 7 € [IN — P(AP)] as follows:

o We always have 7 =prp T.

e Forpe AP,
T‘:LTLp = pET(O).

e For Oy € LTL(AP),

TELr Oy € 8T ELTL ¢

where s : IN — IN is the successor function.
e For pU Yy € LTL(AP),

TELrLeUY S

11

(In e IN) ((s™;7 EFrrr YIN(Ym e IN)m <n = s";7 =L ¢)).
e For -p e LTL(AP),
T Errn D¢ & T LT .
e For pVy e LTL(AP),
TELrL oVY &

T =L @ or T E=rrr .

12

The LTL Module

The LTL syntax, in a typewriter approximation of the
mathematical syntax, is supported in Maude by the following LTL
functional module (in the file model-checker.maude).

mod LTL is
protecting BOOL .
sort Formula .

**x* primitive LTL operators

ops True False : -> Formula [ctor format (g o)]
op ~_ : Formula -> Formula [ctor prec 53 format (r o d)]
op _/_ : Formula Formula -> Formula [comm ctor gather (E e)
prec 55 format (d r o d)]
op _\/_ : Formula Formula -> Formula [comm ctor gather (E e)
prec 59 format (d r o d)]
op O_ : Formula -> Formula [ctor prec 53 format (r o d)]
op _U_ : Formula Formula -> Formula [ctor prec 63 format (d r o d)]

13

op

R

: Formula Formula -> Formula [ctor prec 63 format (d r o d)]

**x* defined LTL operators

op _->_ : Formula Formula -> Formula [gather (e E) prec 65
format (d r o d)]

op _<->_ : Formula Formula -> Formula [prec 65 format (d r o d)]

op <>_ : Formula -> Formula [prec 53 format (r o d)]

op [1_ : Formula -> Formula [prec 53 format (r d o d)]

op _W_ : Formula Formula -> Formula [prec 63 format (d r o d)]

op _|->_ : Formula Formula -> Formula [prec 63 format (d r o d)]

*** Jeads-to

op _=>_ : Formula Formula -> Formula [gather (e E) prec 65
format (d r o d)]

op _<=>_ : Formula Formula -> Formula [prec 65 format (d r o d)]

vars f g : Formula .

eqf >g=~f\/g.

eq f <>g=(->g) /\ (g > 1)
eq <> f = True U £
eq [] £ = False R f£

14

eqfWg=(EUg \/ [f.
eq f |->g=1[1(> (<> g)
eqf=>g=1[(£ > g

eq £ <=>g =[] (f <> g)

***x negative normal form

eq ~ True = False .

eq ~ False = True .

eq ~ ~f =f

eq~ (f\/ g =~f/\~g.
eq~ E/N\Ng=~f\/~¢g.

eq ~0f=0~f.
eq ~(fUg =(~£f)R (~ g)
eq ~(fRg)=(1£)U(g
endfm

?

15

[The LTL Module (II)]

Note that, for the moment, no set AP of atomic propositions has
been specified in the LTL module. We will explain in what follows
how such atomic propositions are defined for a given system
module M, and how they are added to the LTL module as a subsort

Prop of Formula.

Note that the nonconstructor connectives have been defined in
terms of more basic constructor connectives in the first set of
equations. But since there are good reasons to put an LTL formula
in negative normal form by pushing the negations next to the
atomic propositions (this is specified by the second set of equations)
we need to consider also the duals of the basic connectives T, (), U,

and V as constructors. That is, we need to also have as constructors
the dual connectives: |, R, and A (note that () is self-dual).

16

Associating Kripke structures to Rewrite Theories

Since the models of temporal logic are Kripke structures, we need
to explain how we can associate a Kripke structure to the rewrite

theory specified by a Maude system module M.

Indeed, we associate a Kripke structure to the rewrite theory

R = (3, E, ¢, R) specified by a Maude system module M by making
explicit two things: (1) the intended kind k of states in the
signature ¥; and (2) the relevant state predicates, that is, the
relevant set AP of atomic propositions.

In general, the state predicates need not be part of the system
specification and therefore they need not be specified in our system
module M. They are typically part of the property specification.

17

[Associating Kripke structures to Rewrite Theories (II)]

This is because the state predicates need not be related to the
operational semantics of M: they are just certain predicates about
the states of the system specified by M that are needed to specify

some properties.

Therefore, after choosing a given kind, say [Fool, in M as our kind
for states we can specity the relevant state predicates in a module
M-PREDS which is a protecting extension of M according to the
following general pattern:
mod M-PREDS is protecting M .
including SATISFACTION .

subsort Foo < State .

endm

18

Associating Kripke structures to Rewrite Theories (III)]

Where the dots ‘...’ indicate the part in which the syntax and
semantics of the relevant state predicates is specified, as further
explained in what follows. The module SATISFACTION (which is
contained in the file model-checker.maude) is very simple, and has

the following specification:

fmod SATISFACTION is
protecting BOOL
sorts State Prop .
op _l=_ : State Prop -> Bool [frozen] .

endfm

where the sort State is unspecified. However, by importing
SATISFACTION into M-PREDS and giving the subsort declaration

19

Associating Kripke structures to Rewrite Theories (IV)

subsort Foo < State .

all terms of sort Foo in M are also made terms of sort State. Note
that we then have the kind identity, [Foo]l=[State].

The operator

op _|=_ : State Prop -> Bool [frozen] .

is crucial to define the semantics of the relevant state predicates in
M-PREDS. Each such state predicate is declared as an operator of

sort Prop.

In standard LTL propositional logic the set AP of atomic

propositions is assumed to be a set of constants.

20

[Associating Kripke structures to Rewrite Theories (V)]

In Maude we can define parametric state predicates, that is,
operators of sort Prop which need not be constants, but may have
one or more extra sorts as parameter arguments. We then define
the semantics of such state predicates (when the predicate holds)

by appropriate equations.

We can illustrate all this by means of a simple mutual exclusion
example. Suppose that our original system module M is the
following module MUTEX, in which two processes, one named a and
another named b, can be either waiting or in their critical section,
and take turns accessing their critical section by passing each other
a different token (either $ or *).

21

Associating Kripke structures to Rewrite Theories (VI)

mod MUTEX is
sorts Name Mode Proc Token Conf

subsorts Token Proc < Conf

op none : -> Conf

op __ : Conf Conf -> Conf [assoc comm id: none]
ops a b : -> Name

ops wait critical : -> Mode

op [_,_] : Name Mode -> Proc

ops * $§ : -> Token .

rl [a-enter] : $ [a,wait] => [a,criticall
rl [b-enter] : *x [b,wait] => [b,criticall

rl [a-exit] : [a,critical] => [a,wait] =*
rl [b-exit] : [b,critical] => [b,wait] $.
endm

22

[Associating Kripke structures to Rewrite Theories (VII)]

Our obvious kind for states is the kind [Conf] of configurations. In
order to state the desired safety and liveness properties we need
state predicates telling us whether a process is waiting or is in its
critical section. We can make these predicates parametric on the

name of the process and define their semantics as follows:

mod MUTEX-PREDS is protecting MUTEX . including SATISFACTION .
subsort Conf < State .
ops crit wait : Name -> Prop .
var N : Name .
var C : Conf
eq [N,critical] C |= crit(N) = true .
eq C |= crit(N) = false [owisel]
eq [N,wait] C |= wait(N) = true .
eq C |= wait(N) = false [owise]

endm

23

Associating Kripke structures to Rewrite Theories (VIII)

The above example illustrates a general method by which desired
state predicates for a module M are defined in a protecting
extension, say M-PREDS, of M which imports SATISFACTION.

One specifies the desired states by choosing a sort in M and
declaring it as a subsort of State. One then defines the syntax of
the desired state predicates as operators of sort Prop, and defines
their semantics by means of a set of equations that specify for what

states a given state predicate evaluates to true.

We assume that those equations, when added to those of M, are

(ground) Church-Rosser and terminating.

24

[Associating Kripke structures to Rewrite Theories (IX)]

Since we should protect BOOL, it is important to make sure that
satisfaction of state predicates is fully defined. This can be checked
with Maude’s SCC tool.

This means that we should give equations for when the predicates
are true and when they are false. In practice, however, this often
reduces to specifying when a predicate is true by means of (possibly
conditional) equations of the general form,

t=p(vr,...,v,) =true if C

because we can cover all the remaining cases, when it is false, with

an equation

x : State = p(y1,...,Yyn) = false |owise| .

25

Associating Kripke structures to Rewrite Theories (X)

In other cases, however —for example because we want to perform
further reasoning using formal tools— we may fully define the true
and false cases of a predicate not by using the [owise] attribute,
but by explicit (possibly conditional) equations of the more general
form,

t = plvy,...,v,) =bexp if C,
where bexp is an arbitrary Boolean expression.

We can now associate to a system module M specifying a rewrite
theory R = (X, E, ¢, R) (with a selected kind k of states and with
state predicates Il defined by means of equations D in a protecting
extension M-PREDS of M) a Kripke structure whose atomic

predicates are specified by the set

26

[Associating Kripke structures to Rewrite Theories (XI)]

AP = {6(p) | p € 11, 0 ground substitution},

where, by convention, we use the simplified notation 6(p) to denote

the ground term p(x1,...,x,)0.

This defines a labeling function L7 on the set of states Tk B,k

assigning to each [t] € Ty g 5, the set of atomic propositions,

Li([t]) ={0(p) € APu | (EUD)F (V0)1t|=0(p) = true}.

The Kripke structure we are interested in is then

K(R,k)n = (Ts/g.x (=) Ln)

27

Associating Kripke structures to Rewrite Theories (XII)

If 'R satisfies the usual executability requirements we have the
isomorphism Tr = Cr, and K(R, k)1 has an isomorphic
representation as the Kripke structure (Cs/ gk, (—¢,.)®, Lf),
where, by definition, for each ¢t € Uy /g, we have,

L5 (t) = {0(p) € AP | cangup(t = 6(p)) = truel.

This is the most intituitive and computable representation for our
desired Kripke structure, and indeed the one used by Maude for
LTL model checking purposes. Therefore, to ensure correctness of
LTL model checking in Maude it is essential to check that R

satisfies the usual executability requirements.

28

