
Program Verification: Lecture 20

José Meseguer

Computer Science Department
University of Illinois at Urbana-Champaign

1

Decidability of Propositional LTL

It is well-known that, for any computable Kripke structure
A = (A,→A, L), any state a ∈ A such that the set

ReachA(a) = {x ∈ A | ∃π ∈ Path(A) ∃n ∈ IN s.t. π(0) = a∧π(n) = x}

of states reachable from a in A is finite, and any LTL formula
φ ∈ LTL(AP), where L : A −→ P(AP), there is a decision
procedure that can effectively decide the satisfaction relation,

A, a |=LTL φ.

Furthermore, if A, a ̸|=LTL φ, the decision procedure will exhibit a
counterexample, that is, a path not satisfying φ.

2

Decidability of Propositional LTL (II)

A decision procedure of this kind is called a model checking
algorithm, since it checks whether φ holds in the model A with
initial state a. Detailed discussion of such algorithms for a variety
of temporal logics such as LTL,CTL, and CTL∗ is beyond the
scope of this course; see the excellent text “Model Checking” by
Clark, Grumberg, and Peled. There are two rough classes of model
checking algorithms:

• explicit-state model checking algorithms, that explicitly search
the state space of A to find a counterexample;

• symbolic model checking algoritms, that use a symbolic
representation of sets of states (BDDs or other representations)
to compute the fixpoint of the transition relation, i.e., the set
ReachA(a).

3

The Maude Model Checker

Suppose that, given a system module M specifying a rewrite theory
R = (Σ, E, ϕ,R), we have:

• chosen a kind k in M as our kind of states;

• defined some state predicates Π and their semantics in a
module, say M-PREDS, protecting M by the method already
explained in this lecture.

Then, as explained earlier, this defines a Kripke structure K(R, k)Π

on the set of atomic propositions APΠ. Given an initial state
[t] ∈ TΣ/E,k and an LTL formula φ ∈ LTL(APΠ) we would like to
have a procedure to decide the satisfaction relation,

4

The Maude Model Checker (II)

K(R, k)Π, [t] |= φ.

By applying the general LTL decidability results to our Kripke
structure K(R, k)Π, this satisfaction relation becomes decidable if
two conditions hold:

1. The set of states in TΣ/E,k that are reachable from [t] by
rewriting is finite.

2. The rewrite theory R = (Σ, E, ϕ,R) specified by M plus the
equations D defining the predicates Π are such that:

5

The Maude Model Checker (III)

• both E and E ∪D are (ground) Church-Rosser and
terminating, perhaps modulo some axioms A, and

• R is (ground) coherent relative to E (again, perhaps modulo
some axioms A).

Under these assumptions, both the state predicates Π and the
transition relation →1

R are computable and, given the finite
reachability assumption, we can then settle the above satisfaction
problem using a model checking procedure. Specifically, Maude
uses an on-the-fly LTL model checking procedure of the style
described by Clark, Grumberg, and Peled.

6

The Maude Model Checker (III)

The basis of this procedure is the following. Each LTL formula φ

has an associated Büchi automaton Bφ whose acceptance
ω-language is exactly that of the traces satisfying φ. We can then
reduce the satisfaction problem

K(R, k)Π, [t] |= φ

to the emptiness problem of the language accepted by the
synchronous product of B¬φ and (the Büchi automaton associated
to) (K(R, k)Π, [t]). The formula φ is satisfied iff such a language is
empty. The model checking procedure checks emptiness by looking
for a counterexample, that is, an infinite computation belonging to
the language recognized by the synchronous product.

7

The Maude Model Checker (IV)

This makes clear our interest in obtaining the negative normal form
of a formula ¬φ, since we need it to build the Büchi automaton
B¬φ.

For efficiency purposes we need to make B¬φ as small as possible.
The following module LTL-SIMPLIFIER (also in the
model-checker.maude file) tries to further simplify the negative
normal form of the formula ¬φ in the hope of generating a smaller
Büchi automaton B¬φ. This module is optional (the user may
choose to include it or not when doing model checking) but tends
to help building a smaller B¬φ.

8

The Maude Model Checker (V)

fmod LTL-SIMPLIFIER is
including LTL .

*** The simplifier is based on:
*** Kousha Etessami and Gerard J. Holzman,
*** "Optimizing Buchi Automata", p153-167, CONCUR 2000, LNCS 1877.
*** We use the Maude sort system to do much of the work.

sorts TrueFormula FalseFormula PureFormula PE-Formula PU-Formula .
subsort TrueFormula FalseFormula < PureFormula <
PE-Formula PU-Formula < Formula .

op True : -> TrueFormula [ctor ditto] .
op False : -> FalseFormula [ctor ditto] .
op _/_ : PE-Formula PE-Formula -> PE-Formula [ctor ditto] .
op _/_ : PU-Formula PU-Formula -> PU-Formula [ctor ditto] .
op _/_ : PureFormula PureFormula -> PureFormula [ctor ditto] .

9

op _\/_ : PE-Formula PE-Formula -> PE-Formula [ctor ditto] .
op _\/_ : PU-Formula PU-Formula -> PU-Formula [ctor ditto] .
op _\/_ : PureFormula PureFormula -> PureFormula [ctor ditto] .
op O_ : PE-Formula -> PE-Formula [ctor ditto] .
op O_ : PU-Formula -> PU-Formula [ctor ditto] .
op O_ : PureFormula -> PureFormula [ctor ditto] .
op _U_ : PE-Formula PE-Formula -> PE-Formula [ctor ditto] .
op _U_ : PU-Formula PU-Formula -> PU-Formula [ctor ditto] .
op _U_ : PureFormula PureFormula -> PureFormula [ctor ditto] .
op _U_ : TrueFormula Formula -> PE-Formula [ctor ditto] .
op _U_ : TrueFormula PU-Formula -> PureFormula [ctor ditto] .
op _R_ : PE-Formula PE-Formula -> PE-Formula [ctor ditto] .
op _R_ : PU-Formula PU-Formula -> PU-Formula [ctor ditto] .
op _R_ : PureFormula PureFormula -> PureFormula [ctor ditto] .
op _R_ : FalseFormula Formula -> PU-Formula [ctor ditto] .
op _R_ : FalseFormula PE-Formula -> PureFormula [ctor ditto] .

vars p q r s : Formula .
var pe : PE-Formula .
var pu : PU-Formula .
var pr : PureFormula .

10

*** Rules 1, 2 and 3; each with its dual.
eq (p U r) /\ (q U r) = (p /\ q) U r .
eq (p R r) \/ (q R r) = (p \/ q) R r .
eq (p U q) \/ (p U r) = p U (q \/ r) .
eq (p R q) /\ (p R r) = p R (q /\ r) .
eq True U (p U q) = True U q .
eq False R (p R q) = False R q .

*** Rules 4 and 5 do most of the work.
eq p U pe = pe .
eq p R pu = pu .

*** An extra rule in the same style.
eq O pr = pr .

*** We also use the rules from:
*** Fabio Somenzi and Roderick Bloem,
*** "Efficient Buchi Automata from LTL Formulae",
*** p247-263, CAV 2000, LNCS 1633.
*** that are not subsumed by the previous system.

11

*** Four pairs of duals.
eq O p /\ O q = O (p /\ q) .
eq O p \/ O q = O (p \/ q) .
eq O p U O q = O (p U q) .
eq O p R O q = O (p R q) .
eq True U O p = O (True U p) .
eq False R O p = O (False R p) .
eq (False R (True U p)) \/ (False R (True U q)) =

False R (True U (p \/ q)) .
eq (True U (False R p)) /\ (True U (False R q)) =

True U (False R (p /\ q)) .

*** <= relation on formula
op _<=_ : Formula Formula -> Bool [prec 75] .

eq p <= p = true .
eq False <= p = true .
eq p <= True = true .
ceq p <= (q /\ r) = true if (p <= q) /\ (p <= r) .
ceq p <= (q \/ r) = true if p <= q .

12

ceq (p /\ q) <= r = true if p <= r .
ceq (p \/ q) <= r = true if (p <= r) /\ (q <= r) .
ceq p <= (q U r) = true if p <= r .
ceq (p R q) <= r = true if q <= r .
ceq (p U q) <= r = true if (p <= r) /\ (q <= r) .
ceq p <= (q R r) = true if (p <= q) /\ (p <= r) .
ceq (p U q) <= (r U s) = true if (p <= r) /\ (q <= s) .
ceq (p R q) <= (r R s) = true if (p <= r) /\ (q <= s) .

*** condition rules depending on <= relation
ceq p /\ q = p if p <= q .
ceq p \/ q = q if p <= q .
ceq p /\ q = False if p <= ~ q .
ceq p \/ q = True if ~ p <= q .
ceq p U q = q if p <= q .
ceq p R q = q if q <= p .
ceq p U q = True U q if p =/= True /\ ~ q <= p .
ceq p R q = False R q if p =/= False /\ q <= ~ p .
ceq p U (q U r) = q U r if p <= q .
ceq p R (q R r) = q R r if q <= p .

endfm

13

The Maude Model Checker (VI)

Suppose that all the requirements listed above to perform model
checking are satisfied. How do we then model check a given LTL
formula in Maude for a given initial state [t] in a module M? We
define a new module, say M-CHECK, according to the following
pattern:
mod M-CHECK is
protecting M-PREDS .
including MODEL-CHECKER .
including LTL-SIMPLIFIER . *** optional
op init : -> k . *** optional
eq init = t . *** optional

endm

The declaration of a constant init of the kind of states is not
necessary: it is a matter of convenience, since the initial state t
may be a large term.

14

The Maude Model Checker (VII)

The module MODEL-CHECKER is as follows.

fmod MODEL-CHECKER is protecting QID . including SATISFACTION .
including LTL .
subsort Prop < Formula .

*** transitions and results
sorts RuleName Transition TransitionList ModelCheckResult .
subsort Qid < RuleName .
subsort Transition < TransitionList .
subsort Bool < ModelCheckResult .
ops unlabeled deadlock : -> RuleName .
op {_,_} : State RuleName -> Transition [ctor] .
op nil : -> TransitionList [ctor] .
op __ : TransitionList TransitionList -> TransitionList [ctor assoc id: nil] .
op counterexample : TransitionList TransitionList -> ModelCheckResult [ctor] .
op modelCheck : State Formula ~> ModelCheckResult [special (...)] .
endfm

15

The Maude Model Checker (VIII)

Its key operator is modelCheck (whose special attribute has been
omitted here), which takes a state and an LTL formula and returns
either the Boolean true if the formula is satisfied, or a
counterexample when it is not satisfied.

Let us illustrate the use of this operator with our MUTEX example.
Following the pattern described above, we can define the module

mod MUTEX-CHECK is
protecting MUTEX-PREDS .
including MODEL-CHECKER .
including LTL-SIMPLIFIER .
ops initial1 initial2 : -> Conf .
eq initial1 = $ [a,wait] [b,wait] .
eq initial2 = * [a,wait] [b,wait] .

endm

16

The Maude Model Checker (X)

We are then ready to model check different LTL properties of
MUTEX. The first obvious property to check is mutual exclusion:

Maude> red modelCheck(initial1,[] ~(crit(a) /\ crit(b))) .
reduce in MUTEX-CHECK : modelCheck(initial1, []~ (crit(a) /\ crit(b))) .
rewrites: 18 in 10ms cpu (10ms real) (1800 rewrites/second)
result Bool: true

Maude> red modelCheck(initial2,[] ~(crit(a) /\ crit(b))) .
reduce in MUTEX-CHECK : modelCheck(initial2, []~ (crit(a) /\ crit(b))) .
rewrites: 12 in 0ms cpu (0ms real) (~ rewrites/second)
result Bool: true

17

The Maude Model Checker (XII)

We can also model check the strong liveness property that if a
process waits infinitely often, then it is in its critical section
infinitely often:

Maude> red modelCheck(initial1,([] <> wait(a)) -> ([] <> crit(a))) .
reduce in MUTEX-CHECK : modelCheck(initial1, []<> wait(a) -> []<> crit(a)) .
rewrites: 76 in 0ms cpu (0ms real) (~ rewrites/second)
result Bool: true

Maude> red modelCheck(initial1,([] <> wait(b)) -> ([] <> crit(b))) .
reduce in MUTEX-CHECK : modelCheck(initial1, []<> wait(b) -> []<> crit(b)) .
rewrites: 76 in 0ms cpu (0ms real) (~ rewrites/second)
result Bool: true

Maude> red modelCheck(initial2,([] <> wait(a)) -> ([] <> crit(a))) .
reduce in MUTEX-CHECK : modelCheck(initial2, []<> wait(a) -> []<> crit(a)) .
rewrites: 68 in 10ms cpu (10ms real) (6800 rewrites/second)

18

result Bool: true

Maude> red modelCheck(initial2,([] <> wait(b)) -> ([] <> crit(b))) .
reduce in MUTEX-CHECK : modelCheck(initial2, []<> wait(b) -> []<> crit(b)) .
rewrites: 68 in 0ms cpu (0ms real) (~ rewrites/second)
result Bool: true

19

The Maude Model Checker (XIII)

Of course, not all properties are true. Therefore, instead of a
success we can get a counterexample showing why a property fails.
Suppose that we want to check whether, beginning in the state
initial1, process b will always be waiting. We then get the
counterexample:
Maude> red modelCheck(initial1,[] wait(b)) .
reduce in MUTEX-CHECK : modelCheck(initial1, []wait(b)) .
rewrites: 14 in 10ms cpu (10ms real) (1400 rewrites/second)
result ModelCheckResult:
counterexample({$ [a,wait] [b,wait],'a-enter}

{[a,critical] [b,wait],'a-exit}
{* [a,wait] [b,wait],'b-enter},
{[a,wait] [b,critical],'b-exit}
{$ [a,wait] [b,wait],'a-enter}
{[a,critical] [b,wait],'a-exit}
{* [a,wait] [b,wait],'b-enter})

20

The Maude Model Checker (XIV)

The main counterexample term constructors are:

op {_,_} : State RuleName -> Transition .
op nil : -> TransitionList [ctor] .
op __ : TransitionList TransitionList -> TransitionList [ctor assoc id: nil] .
op counterexample : TransitionList TransitionList -> ModelCheckResult [ctor] .

A counterexample is a pair consisting of two lists of transitions: the
first is a finite path beginning in the initial state, and the second
describes a loop. This is because, if an LTL formula φ is not
satisfied by a finite Kripke structure, it is always possible to find a
counterexample for φ having the form of a path of transitions
followed by a cycle. Note that each transition is represented as a
pair, consisting of a state and the label of the rule applied to reach
the next state.

21

Model Checking TOK-RING

Consider the following TOK-RING module,

(fth NZNAT* is
protecting NAT .
op * : -> NzNat .

endfth)

(fmod NAT/{N :: NZNAT*} is
sort Nat/{N} .
op `[_`] : Nat -> Nat/{N} .
op _+_ : Nat/{N} Nat/{N} -> Nat/{N} .
op _*_ : Nat/{N} Nat/{N} -> Nat/{N} .
vars I J : Nat .
ceq [I] = [I rem *] if I >= * .
eq [I] + [J] = [I + J] .
eq [I] * [J] = [I * J] .

endfm)

22

(omod TOK-RING{N :: NZNAT*) is
protecting NAT/{N} .
sort Mode .
subsort Nat/{N} < Oid .
ops wait critical : -> Mode .
msg tok : Nat/{N} -> Msg .
op init : -> Configuration .
op make-init : Nat/{N} -> Configuration .
class Proc | mode : Mode .
var I : Nat .
ceq init = tok([0]) make-init([I]) if s(I) := * .
ceq make-init([s(I)])
= < [s(I)] : Proc | mode : wait > make-init([I])
if I < * .

eq make-init([0]) = < [0] : Proc | mode : wait > .
rl [enter] : tok([I]) < [I] : Proc | mode : wait >
=> < [I] : Proc | mode : critical > .

rl [exit] : < [I] : Proc | mode : critical >
=> < [I] : Proc | mode : wait > tok([s(I)]) .

endom)

23

Model Checking TOK-RING (II)

The TOK-RING module satisfies the following two properties:

• mutual exclusion, and

• guaranteed reentrance, that is:

◦ each process eventually reaches its critical section, and

◦ it does so again after 2× n steps.

There isn’t a single LTL formula stating each of these properties:
they are parametric on n. However, in Full Maude we can specify
these properties by parametic formula definitions as follows:

24

Model Checking TOK-RING (III)

(omod CHECK-TOK-RING{N :: NZNAT*} is
inc TOK-RING{N} .
inc MODEL-CHECKER .
subsort Configuration < State .

op inCrit : Nat/{N} -> Prop .
op twoInCrit : -> Prop .

var I : Nat .
vars X Y : Nat/{N} .
var C : Configuration .
var F : Formula .

eq < X : Proc | mode : critical > C |= inCrit(X) = true .
eq < X : Proc | mode : critical > < Y : Proc | mode : critical > C

|= twoInCrit = true .

25

op guaranteedReentrance : -> Formula .
op allProcessesReenter : Nat -> Formula .
op nextIter_ : Formula -> Formula .
op nextIterAux : Nat Formula -> Formula .

ceq guaranteedReentrance = allProcessesReenter(I) if s(I) := * .

eq allProcessesReenter(s(I))
= (<> inCrit([s(I)])) /\

[] (inCrit([s(I)]) -> (nextIter inCrit([s(I)]))) /\
allProcessesReenter(I) .

eq allProcessesReenter(0) = (<> inCrit([0])) /\
[] (inCrit([0]) -> (nextIter inCrit([0]))) .

eq nextIter F = nextIterAux(2 * *, F) .
eq nextIterAux(s I, F) = O nextIterAux(I, F) .
eq nextIterAux(0, F) = F .

endom)

26

Model Checking TOK-RING (IV)

We cannot model check these properties directly in their
parameterized form. However, for each nozero value n we can check
the corresponding instance of these properties. For example, for
n = 5 we define in Full Maude the view,

(view 5 from NZNAT* to NAT is
op * to term 5 .

endv)

Then we can model check the mutual exclusion property for 5
processes as follows:

(red in CHECK-TOK-RING{5} : modelCheck(init,[] ~ twoInCrit) .)
result Bool :
true

27

Model Checking TOK-RING (V)

In the same way, we can model check the guaranteed reentrance
property for n = 5 by giving to Full Maude the command,

(red in CHECK-TOK-RING(5) : modelCheck(init,[] guaranteedReentrance) .)
result Bool :
true

28

