Program Verification: Lecture 22

José Meseguer and Stephen Skeirik

University of Illinois
at Urbana-Champaign
Call \(\{u_1, \ldots, u_k\} \subseteq T_\Omega(X)_s \) a **pattern set** for sort \(s \) iff

\[
T_{\Omega,s} = \bigcup_{1 \leq l \leq k} \{u_l \rho \mid \rho \in [X \to T_\Omega]\}.
\]

Example. \(\{0, s(x)\} \) and \(\{0, s(0), s(s(y))\} \) are pattern sets for \(Nat \).

The following auxiliary rule allows reasoning by cases:

Case Analysis

\[
\bigwedge_{1 \leq l \leq k} [A, C] \vdash_T (u \mid \varphi)\{x:s \mapsto u_l\} \longrightarrow^\ast A\{x:s \mapsto u_l\}
\]

\[
[A, C] \vdash_T u \mid \varphi \longrightarrow^\ast A
\]

where \(x:s \in \text{vars}(u) \) and \(\{u_1, \ldots, u_k\} \) is a pattern set for \(s \).
Suppose we want to prove that a rewrite theory \(\mathcal{R} = (\Sigma, B, R) \) satisfies a reachability formula \(A \overset{*}{\rightarrow} B \), denoted \(\mathcal{R} = (\Sigma, B, R) \models A \overset{*}{\rightarrow} B \). How can we do it?

The inference rules of reachability logic have been implemented in Maude as a new tool: the Maude *Reachability Logic Prover*. To use this tool to prove properties of a rewrite theory specified as a system module `FOO` you:

1. load `FOO` into Maude
2. give to Maude the command
   ```maude
   load rltool
   ```
3. From now on, all your commands are given to the tool, and not really to Maude. They should be enclosed in parentheses and ended by a period right before the closing parenthesis (as for Full Maude). The first such command should be:
   ```maude
   (select FOO .)
   ```
Now you will be ready to give commands to: (i) enter goals and (ii) prove goals. As with all Maude tools, there is an associated command grammar. Here is the syntax for reachability formulas:

\[
\begin{align*}
\text{Atom} & := (\text{Term})=(\text{Term}) \\
& \quad \mid (\text{Term})=/=(\text{Term}) \\
\text{Conjunction} & := \text{true} \\
& \quad \mid \text{Atom} \\
& \quad \mid \text{Conjunction} \land \text{Conjunction} \\
\text{Pattern} & := (\text{Term}) \mid\text{Conjunction} \\
\text{PatternFormula} & := \text{Pattern} \\
& \quad \mid \text{PatternFormula} \lor \text{PatternFormula} \\
\text{RFormula} & := \text{Pattern} \Rightarrow \text{PatternFormula}
\end{align*}
\]
For example, for \textit{CHOICE}, the reachability formula

\[
\{M\} \mid \top \xrightarrow{\otimes} \{M'\} \mid M' \subseteq M = tt
\]

is expressed in this grammar as:

\[
(\{M\text{:MSet}\}) \mid \text{true} \Rightarrow
\quad (\{M'\text{:MSet}\}) \mid (M'\text{:MSet} = C M\text{:MSet}) = (tt)
\]

We can now give commands according to the following grammar:
Reachability Logic Tool Commands (III)

Command Syntax

TermSet ::= (Term) | TermSet U TermSet
VariableSet ::= (Variable) | VariableSet U VariableSet
Command ::= (select ModuleName .)
 | (use tool ToolName for ProblemName on Modulename .)
 | (def-term-set PatternFormula .)
 | (subsumed Pattern =< Pattern .)
 | (add-goal Label : RFormula .)
 | (inv Label to Operator with VariableSet on PatternFormula .)
 | (inv Label to Operator on PatternFormula)
 | (start-proof .)
 | (auto .)
 | (auto Nat .)
 | (auto* .)
 | (case Nat on VariableName by TermSet .)
 | (on Nat use strat LabelList .)
 | (quit .)

Q: How do we use these commands in a proof?
Q: How do we use these commands in a proof?
A: The general process has the following steps:

1. Select the appropriate backend solver (for SMT reasoning)
2. Define the set of terminating states to be used (using extended theory R_{stop} when reasoning about invariants)
3. Perform any subsumption checks (only needed for invariants)
4. Add goals, auxiliary lemmas, and/or invariants to be proved
5. Start the proof
6. Apply tactics to complete the proof

We will illustrate the process above through two examples.
Suppose we will *not* prove any invariants.

mod CHOICE is --- from Lecture 21
 protecting NAT .
 sorts MSet State Pred .
 subsorts Nat < MSet .
 op __ : MSet MSet -> MSet [ctor assoc comm] .
 op {} : MSet -> State .
 op tt : -> Pred [ctor] .
 op _=C_ : MSet MSet -> Pred [ctor] .
 vars U V : MSet . var N : Nat .
 eq U =C U = tt .
 eq U =C U V = tt .
 rl [choice] : {U V} => {U} .
endm
According to the procedure outlined above, the first step is to select our SMT solver backend by using the `use tool` command. We need to provide a:

1. ToolName – use magic constant: `varsat`
2. ProblemName – use magic constant: `validity`
3. ModuleName – replace with module name, i.e. `CHOICE`

Thus for the module `CHOICE`, we give command:

```
(use tool varsat for validity on CHOICE .)
```
Then, the next step is to define our set of terminating states \([T]\) as *pattern formula* \(T\).

For the theory CHOICE, we can specify \(T\) by giving the command:

\[
\text{(def-term-set \{N:Nat\}) | true .)
\]

Q: How do we know we selected the correct set \([T]\)?

A: Currently, this property must be manually checked by the user. Here we see the rule \([\text{choice}]\) non-deterministically removes elements from the state whenever there are two or more elements.
Next we need to enter our goals into tool including the main formula \(A \rightarrow \astar \ B \) and perhaps some auxiliary lemmas. To enter to the tool each formula in \(C \) we give the command: (add-goal Label : RFormula .)

For example, in CHOICE, to enter the formula

\[
\{M\} \mid \top \rightarrow \astar \ \{M'\} \mid M' \subseteq M = tt
\]

we give the command:

\[
\text{(add-goal reaches-subset : (\{M:MSet\}) \mid true => (\{M':MSet\}) \mid (M':MSet =C M:MSet) = (tt) .)}
\]

The tool gives each generated goal a unique number by sequentially incrementing a counter.
At this point, we can start the proof process by giving the
\texttt{(start-proof .)} command.

If we want to see which goals are obtained by one (resp. \(n\)) step(s)
of applying some rule of inference to each of current goals we give
the command: \texttt{\textbackslash{}texttt{(auto \ .\)}} (resp. \texttt{\textbackslash{}texttt{(auto \ n \ .\)}}).

Instead, if we want to go to the end of the proof process in the
hope that it will terminate we give the \texttt{\textbackslash{}texttt{(auto* \ .\)}} command. And
at any time we can quit giving the \texttt{\textbackslash{}texttt{(quit \ .\)}} command.
At any time in the proof process we can apply the **Case Analysis** rule to a goal named with a number list l to decompose it into several subgoals by giving the command:

\[
\text{(case Nat on VariableName by TermSet .)}
\]

For example, if we want to do case analysis on the goal

\[
(\{M: \text{MSet}\}) \mid \text{true} \Rightarrow (\{M': \text{MSet}\}) \mid (M': \text{MSet} =_{C} M: \text{MSet}) = (\text{tt})
\]

which was named, say, as goal 1 by the tool, using the pattern set

\{
N: \text{Nat}, M_1: \text{MSet} M_2: \text{MSet}
\}

we will give the command:

\[
\text{(case 1 on M: \text{MSet by (N: \text{Nat}) U (M1: \text{MSet M2: \text{MSet}) .})}
\]
Putting it all together, we can complete the proof using the following script:

```plaintext
load choice.maude
load rltool.maude
(select CHOICE .)
(use tool varsat for validity on CHOICE .)
(def-term-set ({N:Nat}) | true .)
(add-goal reaches-subset : ({M:MSet}) | true =>
   ({M’:MSet}) | (M’:MSet =C M:MSet) = (tt) .)
(start-proof .)
(case 1 on M:MSet by (N:Nat) U (M1:MSet M2:MSet) .)
(auto* .)
```
Reachability Proof Example: Alternative Proof

Note \(\llbracket \{ M \} \mid \top \rrbracket \subseteq \llbracket \{ M' \} \mid M' \subseteq M = tt \rrbracket \) holds!
Because with substitution \(\{ M' \mapsto M \} \) we get \(M \subseteq M = tt \), which is equivalent to \(\top \).
Thus we can use the simpler alternative proof script below.

```maude
load choice.maude
load rltool.maude
(select CHOICE .)
(use tool varsat for validity on CHOICE .)
(def-term-set (\{N:Nat\}) \mid true .)
(add-goal reaches-subset : (\{M:MSet\}) \mid true =>
   (\{M’:MSet\}) \mid (M’:MSet =C M:MSet) = (tt) .)
(start-proof .)
(auto .)
```
Recall when proving \textit{invariants}, we need the following result:

\textbf{Corollary}

If $[S_0] \subseteq [B]$ and $B \xrightarrow{\circ} [B\sigma]$ holds in $\mathcal{R}_{\text{stop}}$, then B is an invariant for \mathcal{R} from initial states S_0.

This introduces three new requirements we need to handle:

- we need to define the theory $\mathcal{R}_{\text{stop}}$
- we need to relativize our proof to use terminating states defined by the new operator $[-]$ in $\mathcal{R}_{\text{stop}}$
- we need to perform a subsumption check $[S_0] \subseteq [B]$
We already saw READERS–WRITERS in Lecture 21.

mod READERS–WRITERS is
 protecting NAT .
 sort State .
 op <_,_> : Nat Nat -> State [ctor] . --- readers/writers
 vars R W : Nat .
 rl < 0, 0 > => < 0, s(0) > .
 rl < R, s(W) > => < R, W > .
 rl < R, 0 > => < s(R), 0 > .
 rl < s(R), W > => < R, W > .
endm
To prove invariants over a non-terminating theory like READERS–WRITERS, we first define its extension READERS–WRITERS–stop:

\[
\text{mod READERS–WRITERS–stop is protecting READERS–WRITERS .}
\]

\[
\text{op \([_,_]\) : Nat Nat \to State .}
\]

\[
\text{var \(R, W : \text{Nat .}
\]

\[
\text{rl \([\text{stop}] : < R, W > \to [R, W] .}
\]

endm

Recall the \textit{mutual exclusion} proof we were working on earlier...
In READERS–WRITERS, by our corollary, to prove the invariant

\[\text{Mutex} = \langle R, W \rangle \mid W = 0 \lor (W = 1 \land R = 0) \]

holds from state \(\langle 0, 0 \rangle \), we must check in READERS–WRITERS–stop:

1. \([\langle 0, 0 \rangle \mid \top] \subseteq \llbracket \text{Mutex}_1 \rrbracket\)
2. \(\text{Mutex}_1 \rightarrow^* [\text{Mutex}]\sigma\)
3. \(\text{Mutex}_2 \rightarrow^* [\text{Mutex}]\sigma\)

where:

\(\text{Mutex}_1 = \langle R, W \rangle \mid W = 0\)
\(\text{Mutex}_2 = \langle R, W \rangle \mid W = 1 \land R = 0\)

Substitution \(\sigma\) is a renaming of \(\text{Mutex}\).
Next the set $[T]$ of *terminating states* should also be specified as a *pattern formula* T defined using the new operator $[-]$.

This is allowed because $[T]$ need only be *contained* in, or equal to, the set of *all* terminating states. Thus, we perform more detailed reasoning about T-terminating sequences to localize the reasoning to T by the inference relation \vdash_T (see inference rules).

In this way we can prove invariants for *any* rewrite theory \mathcal{R}, terminating, non-terminating, or never-terminating, by defining: $T = [x_1, \ldots, x_n] | \top$ as terminating states in $\mathcal{R}_{\text{stop}}$.

For example for READERS–WRITERS–stop, we specify T by:

```
(def-term-set ([R:Nat,W:Nat]) | true .)
```
We next need to perform a subsumption check.

If our invariant $B = \text{Mutex}$ where:

$$\text{Mutex} = \langle R, W \rangle \mid W = 0 \lor (W = 1 \land R = 0)$$

and our initial state $S_0 = \langle 0, 0 \rangle \mid \top$

We discharge the proof obligation $[[S_0]] \subseteq [[B]]$ by using the command (subsumed Pattern =< Pattern .)

For example, in READERS–WRITERS–stop, we could write:

(subsumed (< 0,0 >) | true =<
 (< R:Nat,W:Nat >) | (W:Nat) = (0) \/
 (< R:Nat,W:Nat >) | (W:Nat) = (1) \/
 (R:Nat)=0 .)
After: (i) checking containments of the form $[S_0] \subseteq [B]$ with the (subsumed Pattern \Rightarrow Pattern .) command and (ii) adding all goals in C to the tool with the (add-goal Label : RFormula .) command, we can start the proof process by giving the (start-proof .) command.

At this point, we can make use of the auto, case, and quit commands exactly as shown before in the CHOICE example.

Let’s put it all together.

(Don’t forget to select our backend SMT solver!)
Invariant Proof Example (VIII)

load rw.maude
load rltool.maude
(select module READERS-WRITERS-stop .)
(use tool varsat for validity on READERS-WRITERS-stop .)
(subsumed (< 0,0 >) | true =>
 (< R:Nat,W:Nat >) | (W:Nat) = (0) /
 (< R:Nat,W:Nat >) | (W:Nat) = (1) /
 (R:Nat) = (0) .
(def-term-set ([R:Nat,W:Nat]) | true .)
(add-goal mutex#1 : (< R:Nat,W:Nat >) | (W:Nat) = (0)
 => ([R’:Nat,W’:Nat]) | (W’:Nat) = (0) /
 ([R’:Nat,W’:Nat]) | (W’:Nat) = (1) /
 (R’:Nat) = (0) .)
(add-goal mutex#2 : (< R:Nat,W:Nat >) | (W:Nat) = (1) /
 (R:Nat) = (0)
 => ([R’:Nat,W’:Nat]) | (W’:Nat) = (0) /
 ([R’:Nat,W’:Nat]) | (W’:Nat) = (1) /
 (R’:Nat) = (0) .)
(start-proof .)
(on 1 use strat mutex#1 mutex#2 .)
(on 2 use strat mutex#1 mutex#2 .)
(auto* .)
Q: We saw these extra commands above. What do they mean?

(on 1 use strat mutex#1 mutex#2 .)
(on 2 use strat mutex#1 mutex#2 .)

A: These commands instruct the tool, on all descendants from some goal named \(n \), use the labelled initial goals as potential axioms. By default, given an add-goal command with label \(L \), only \(L \) is used as an axiom to prove goals that are descendants of the goal labelled \(L \) corresponding to the add-goal command.

Q: The proof above is a little verbose. Can we do better?

A: Yes, by using the inv command as shown below.
Invariant Proof Example (X)

load rw.maude
load rltool.maude
(select module READERS-WRITERS-stop .)
(use tool varsat for validity on READERS-WRITERS-stop .)
(subsumed (< 0,0 >) | true =<
 (< R:Nat,W:Nat >) | (W:Nat) = (0) \/
 (< R:Nat,W:Nat >) | (W:Nat) = (1) \/ (R:Nat) = (0) .)
(def-term-set ([R:Nat,W:Nat]) | true .)
(inv mutex to ‘[‘] on
 (< R:Nat,W:Nat >) | (W:Nat) = (0) \/
 (< R:Nat,W:Nat >) | (W:Nat) = (1) \/ (R:Nat) = (0) .)
(on 1 use strat mutex#1 mutex#2 .)
(on 2 use strat mutex#1 mutex#2 .)
(auto* .)

Here, we have to tell inv:

a which operator is our “stopwatch”;
b the pattern formula representing our invariant;
c all variables in the pattern which are parameters (if any is a parameter) using the optional with VariableSet argument (not used here: unparametric).
Advantages of the invariant command:

1. we do not need to perform easy-to-mess-up variable renaming;
2. we do not need to repeat common pieces of goals;
3. generated goal labels are automatically made unique by appending \#n for the \(n^{th}\) generated goal.