Program Verification: Lecture 20

José Meseguer

Computer Science Department
University of Illinois at Urbana-Champaign
It is well-known that, for any computable Kripke structure \(\mathcal{A} = (A, \rightarrow_{\mathcal{A}}, L) \), any state \(a \in A \) such that the set

\[
\text{Reach}_{\mathcal{A}}(a) = \{ x \in A \mid \exists \pi \in \text{Path}(\mathcal{A}) \exists n \in \mathbb{N} \text{ s.t. } \pi(0) = a \land \pi(n) = x \}
\]

of states reachable from \(a \) in \(\mathcal{A} \) is finite, and any LTL formula \(\varphi \in \text{LTL}(AP) \), where \(L : A \rightarrow \mathcal{P}(AP) \), there is a decision procedure that can effectively decide the satisfaction relation,

\[
\mathcal{A}, a \models_{\text{LTL}} \varphi.
\]

Furthermore, if \(\mathcal{A}, a \not\models_{\text{LTL}} \varphi \), the decision procedure will exhibit a counterexample, that is, a path not satisfying \(\varphi \).
A decision procedure of this kind is called a model checking algorithm, since it checks whether φ holds in the model \mathcal{A} with initial state a. Detailed discussion of such algorithms for a variety of temporal logics such as LTL, CTL, and CTL^* is beyond the scope of this course; see the excellent text “Model Checking” by Clark, Grumberg, and Peled. There are two rough classes of model checking algorithms:

- **explicit-state** model checking algorithms, that explicitly search the state space of \mathcal{A} to find a counterexample;

- **symbolic model checking** algorithms, that use a symbolic representation of sets of states (BDDs or other representations) to compute the fixpoint of the transition relation, i.e., the set $Reach_\mathcal{A}(a)$.

Suppose that, given a system module \(M \) specifying a rewrite theory \(\mathcal{R} = (\Sigma, E, \phi, R) \), we have:

- chosen a kind \(k \) in \(M \) as our kind of states;
- defined some state predicates \(\Pi \) and their semantics in a module, say \(\text{M-PREDs} \), protecting \(M \) by the method already explained in this lecture.

Then, as explained earlier, this defines a Kripke structure \(\mathcal{K}(\mathcal{R}, k)_\Pi \) on the set of atomic propositions \(AP_\Pi \). Given an initial state \([t] \in T_{\Sigma/E,k}\) and an LTL formula \(\varphi \in LTL(AP_\Pi) \) we would like to have a procedure to decide the satisfaction relation,
\[\mathcal{K}(\mathcal{R}, k)_{\Pi}, [t] \models \varphi. \]

By applying the general LTL decidability results to our Kripke structure \(\mathcal{K}(\mathcal{R}, k)_{\Pi} \), this satisfaction relation becomes decidable if two conditions hold:

1. The set of states in \(T_{\Sigma/E,k} \) that are reachable from \([t] \) by rewriting is finite.

2. The rewrite theory \(\mathcal{R} = (\Sigma, E, \phi, R) \) specified by \(M \) plus the equations \(D \) defining the predicates \(\Pi \) are such that:
both E and $E \cup D$ are (ground) Church-Rosser and terminating, perhaps modulo some axioms A, and

- R is (ground) coherent relative to E (again, perhaps modulo some axioms A).

Under these assumptions, both the state predicates Π and the transition relation \rightarrow^1_R are computable and, given the finite reachability assumption, we can then settle the above satisfaction problem using a model checking procedure. Specifically, Maude uses an on-the-fly LTL model checking procedure of the style described by Clark, Grumberg, and Peled.
The basis of this procedure is the following. Each LTL formula φ has an associated Büchi automaton B_φ whose acceptance ω-language is exactly that of the traces satisfying φ. We can then reduce the satisfaction problem

$$K(\mathcal{R}, k)_{\Pi}[t] \models \varphi$$

to the emptiness problem of the language accepted by the synchronous product of $B_{\neg \varphi}$ and (the Büchi automaton associated to) $(K(\mathcal{R}, k)_{\Pi}[t])$. The formula φ is satisfied iff such a language is empty. The model checking procedure checks emptiness by looking for a counterexample, that is, an infinite computation belonging to the language recognized by the synchronous product.
This makes clear our interest in obtaining the negative normal form of a formula $\neg \varphi$, since we need it to build the Büchi automaton $B_{\neg \varphi}$.

For efficiency purposes we need to make $B_{\neg \varphi}$ as small as possible. The following module LTL-SIMPLIFIER (also in the model-checker.maude file) tries to further simplify the negative normal form of the formula $\neg \varphi$ in the hope of generating a smaller Büchi automaton $B_{\neg \varphi}$. This module is optional (the user may choose to include it or not when doing model checking) but tends to help building a smaller $B_{\neg \varphi}$.
fmod LTL-SIMPLIFIER is
 including LTL.

*** The simplifier is based on:
*** Kousha Etessami and Gerard J. Holzman,
*** We use the Maude sort system to do much of the work.

sorts TrueFormula FalseFormula PureFormula PE-Formula PU-Formula .
subsort TrueFormula FalseFormula < PureFormula <
PE-Formula PU-Formula < Formula .

op True : -> TrueFormula [ctor ditto] .
op False : -> FalseFormula [ctor ditto] .
op _\/
op _\/
op _\/
_ : PureFormula PureFormula -> PureFormula [ctor ditto] .
op _\/
 : PE-Formula PE-Formula \rightarrow PE-Formula [ctor ditto] .
op _\/
 : PU-Formula PU-Formula \rightarrow PU-Formula [ctor ditto] .
op _\/
 : PureFormula PureFormula \rightarrow PureFormula [ctor ditto] .
op 0_
 : PE-Formula \rightarrow PE-Formula [ctor ditto] .
op 0_
 : PU-Formula \rightarrow PU-Formula [ctor ditto] .
op 0_
 : PureFormula \rightarrow PureFormula [ctor ditto] .
op _U_
 : PE-Formula PE-Formula \rightarrow PE-Formula [ctor ditto] .
op _U_
 : PU-Formula PU-Formula \rightarrow PU-Formula [ctor ditto] .
op _U_
 : PureFormula PureFormula \rightarrow PureFormula [ctor ditto] .
op _U_
 : TrueFormula Formula \rightarrow PE-Formula [ctor ditto] .
op _U_
 : TrueFormula PU-Formula \rightarrow PureFormula [ctor ditto] .
op _R_
 : PE-Formula PE-Formula \rightarrow PE-Formula [ctor ditto] .
op _R_
 : PU-Formula PU-Formula \rightarrow PU-Formula [ctor ditto] .
op _R_
 : PureFormula PureFormula \rightarrow PureFormula [ctor ditto] .
op _R_
 : FalseFormula Formula \rightarrow PU-Formula [ctor ditto] .
op _R_
 : FalseFormula PE-Formula \rightarrow PureFormula [ctor ditto] .

vars p q r s : Formula .
var pe : PE-Formula .
var pu : PU-Formula .
var pr : PureFormula .
*** Rules 1, 2 and 3; each with its dual.

\[
eq (p \cup r) \cap (q \cup r) = (p \cap q) \cup r.
\]

\[
eq (p \cap r) \cup (q \cap r) = (p \cup q) \cap r.
\]

\[
eq (p \cup q) \cap (p \cup r) = p \cup (q \cap r).
\]

\[
eq (p \cap q) \cup (p \cap r) = p \cap (q \cup r).
\]

\[
eq \text{True} \cup (p \cup q) = \text{True} \cup q.
\]

\[
eq \text{False} \cap (p \cap q) = \text{False} \cap q.
\]

*** Rules 4 and 5 do most of the work.

\[
eq p \cup p_\text{e} = p_\text{e}.
\]

\[
eq p \cap p_\text{u} = p_\text{u}.
\]

*** An extra rule in the same style.

\[
eq 0 \cap p_\text{r} = p_\text{r}.
\]

*** We also use the rules from:

*** Fabio Somenzi and Roderick Bloem,

*** "Efficient Buchi Automata from LTL Formulae",

*** that are not subsumed by the previous system.
*** Four pairs of duals.
eq 0 p \land 0 q = 0 (p \land q) .
eq 0 p \lor 0 q = 0 (p \lor q) .
eq 0 p U 0 q = 0 (p U q) .
eq 0 p R 0 q = 0 (p R q) .
eq True U 0 p = 0 (True U p) .
eq False R 0 p = 0 (False R p) .
eq (False R (True U p)) \lor (False R (True U q)) =
 \quad False R (True U (p \lor q)) .
eq (True U (False R p)) \land (True U (False R q)) =
 \quad True U (False R (p \land q)) .

*** <= relation on formula
op _<=_: Formula Formula -> Bool [prec 75] .

eq p <= p = true .
eq False <= p = true .
eq p <= True = true .
ceq p <= (q \land r) = true if (p <= q) \land (p <= r) .
ceq p <= (q \lor r) = true if p <= q .
ceq (p \(\land\) q) \(\leq\) r = true if p \(\leq\) r .

ceq (p \(\lor\) q) \(\leq\) r = true if (p \(\leq\) r) \(\land\) (q \(\leq\) r) .

ceq p \(\leq\) (q \(\lor\) r) = true if p \(\leq\) r .

ceq (p \(\lor\) q) \(\leq\) r = true if q \(\leq\) r .

ceq (p \(\land\) q) \(\leq\) r = true if (p \(\leq\) r) \(\land\) (q \(\leq\) r) .

ceq p \(\leq\) (q \(\land\) r) = true if (p \(\leq\) q) \(\land\) (p \(\leq\) r) .

ceq (p \(\lor\) q) \(\leq\) (r \(\lor\) s) = true if (p \(\leq\) r) \(\land\) (q \(\leq\) s) .

ceq (p \(\land\) q) \(\leq\) (r \(\land\) s) = true if (p \(\leq\) r) \(\land\) (q \(\leq\) s) .

*** condition rules depending on \(\leq\) relation

ceq p \(\land\) q = p if p \(\leq\) q .

ceq p \(\lor\) q = q if p \(\leq\) q .

ceq p \(\land\) q = False if p \(\leq\) \(\neg\) q .

ceq p \(\lor\) q = True if \(\neg\) p \(\leq\) q .

ceq p \(\lor\) q = q if p \(\leq\) q .

ceq p \(\land\) q = q if q \(\leq\) p .

ceq p \(\lor\) q = True \(\lor\) q if p =\/= True \(\land\) \(\neg\) q \(\leq\) p .

ceq p \(\land\) q = False \(\land\) q if p =\/= False \(\land\) q \(\leq\) \(\neg\) p .

ceq p \(\land\) (q \(\lor\) r) = q \(\land\) r if p \(\leq\) q .

ceq p \(\land\) (q \(\land\) r) = q \(\land\) r if q \(\leq\) p .

endfm
Suppose that all the requirements listed above to perform model checking are satisfied. How do we then model check a given LTL formula in Maude for a given initial state \([t]\) in a module \(M\)? We define a new module, say \(M\)-CHECK, according to the following pattern:

\[
\text{mod } M\text{-CHECK is} \\
\text{ protecting } M\text{-PREDs} . \\
\text{ including } \text{MODEL-CHECKER} . \\
\text{ including } \text{LTL-SIMPLIFIER} . \quad \text{*** optional} \\
\text{op init : } \rightarrow k . \quad \text{*** optional} \\
\text{eq init = t} . \quad \text{*** optional} \\
\endm
\]

The declaration of a constant \(\text{init}\) of the kind of states is not necessary: it is a matter of convenience, since the initial state \(t\) may be a large term.
The Maude Model Checker (VII)

The module `MODEL-CHECKER` is as follows.

```
fmod MODEL-CHECKER is protecting QID . including SATISFACTION .
including LTL .
subsort Prop < Formula .

*** transitions and results
sorts RuleName Transition TransitionList ModelCheckResult .
subsort Qid < RuleName .
subsort Transition < TransitionList .
subsort Bool < ModelCheckResult .
ops unlabeled deadlock : -> RuleName .
op {_,_} : State RuleName -> Transition [ctor] .
op nil : -> TransitionList [ctor] .
op modelCheck : State Formula ~> ModelCheckResult [special ( ... )] .
endfm
```
Its key operator is `modelCheck` (whose `special` attribute has been omitted here), which takes a state and an LTL formula and returns either the Boolean `true` if the formula is satisfied, or a counterexample when it is not satisfied.

Let us illustrate the use of this operator with our `MUTEX` example. Following the pattern described above, we can define the module

```plaintext
mod MUTEX-CHECK is
  protecting MUTEX-PREDS .
  including MODEL-CHECKER .
  including LTL-SIMPLIFIER .
  ops initial1 initial2 : -> Conf .
  eq initial1 = $ [a,wait] [b,wait] .
  eq initial2 = * [a,wait] [b,wait] .
endm
```
We are then ready to model check different LTL properties of MUTEX. The first obvious property to check is mutual exclusion:

Maude> red modelCheck(initial1, [] ~(crit(a) \ crit(b))) .
reduce in MUTEX-CHECK : modelCheck(initial1, []~ (crit(a) \ crit(b))) .
rewrites: 18 in 10ms cpu (10ms real) (1800 rewrites/second)
result Bool: true

Maude> red modelCheck(initial2, [] ~(crit(a) \ crit(b))) .
reduce in MUTEX-CHECK : modelCheck(initial2, []~ (crit(a) \ crit(b))) .
rewrites: 12 in 0ms cpu (0ms real) (~ rewrites/second)
result Bool: true
We can also model check the strong liveness property that if a process waits infinitely often, then it is in its critical section infinitely often:

Maude> red modelCheck(initial1,([] <> wait(a)) -> ([] <> crit(a))) .
reduce in MUTEX-CHECK : modelCheck(initial1, []<> wait(a) -> []<> crit(a)) .
rewrites: 76 in 0ms cpu (0ms real) (~ rewrites/second)
result Bool: true

Maude> red modelCheck(initial1,([] <> wait(b)) -> ([] <> crit(b))) .
reduce in MUTEX-CHECK : modelCheck(initial1, []<> wait(b) -> []<> crit(b)) .
rewrites: 76 in 0ms cpu (0ms real) (~ rewrites/second)
result Bool: true

Maude> red modelCheck(initial2,([] <> wait(a)) -> ([] <> crit(a))) .
reduce in MUTEX-CHECK : modelCheck(initial2, []<> wait(a) -> []<> crit(a)) .
rewrites: 68 in 10ms cpu (10ms real) (6800 rewrites/second)
result Bool: true

Maude> red modelCheck(initial2,([] <> wait(b)) -> ([] <> crit(b))) .
reduce in MUTEX-CHECK : modelCheck(initial2, []<> wait(b) -> []<> crit(b)) .
rewrites: 68 in 0ms cpu (0ms real) (~ rewrites/second)
result Bool: true
Of course, not all properties are true. Therefore, instead of a success we can get a counterexample showing why a property fails. Suppose that we want to check whether, beginning in the state initial1, process b will always be waiting. We then get the counterexample:

Maude> red modelCheck(initial1, [] wait(b)) .
reduce in MUTEX-CHECK : modelCheck(initial1, [] wait(b)) .
rewrites: 14 in 10ms cpu (10ms real) (1400 rewrites/second)
result ModelCheckResult:
 counterexample({$ [a,wait] [b,wait], 'a-enter'}
 {[a,critical] [b,wait], 'a-exit}
 {* [a,wait] [b,wait], 'b-enter'},
 {[a,wait] [b,critical], 'b-exit'}
 {$ [a,wait] [b,wait], 'a-enter'}
 {[a,critical] [b,wait], 'a-exit'}
 {* [a,wait] [b,wait], 'b-enter'})
The main counterexample term constructors are:

\[
\begin{align*}
\text{op } \{_,_\} : \text{State RuleName } & \rightarrow \text{Transition } . \\
\text{op } \text{nil} : & \rightarrow \text{TransitionList } [\text{ctor}] . \\
\text{op } __ : \text{TransitionList TransitionList } & \rightarrow \text{TransitionList } [\text{ctor assoc id: nil}] . \\
\text{op } \text{counterexample} : \text{TransitionList TransitionList } & \rightarrow \text{ModelCheckResult } [\text{ctor}] .
\end{align*}
\]

A counterexample is a pair consisting of two lists of transitions: the first is a finite path beginning in the initial state, and the second describes a loop. This is because, if an LTL formula φ is not satisfied by a finite Kripke structure, it is always possible to find a counterexample for φ having the form of a path of transitions followed by a cycle. Note that each transition is represented as a pair, consisting of a state and the label of the rule applied to reach the next state.
Consider the following **TOK-RING** module,

(fth NZNAT* is
 protecting NAT.
 op * : -> NzNat.
endfth)

(fmod NAT/{N :: NZNAT*} is
 sort Nat/{N}.
 op `[_`] : Nat -> Nat/{N}.
 op _+_ : Nat/{N} Nat/{N} -> Nat/{N}.
 op _*_ : Nat/{N} Nat/{N} -> Nat/{N}.
 vars I J : Nat.
 ceq [I] = [I rem *] if I >= *.
 eq [I] + [J] = [I + J].
 eq [I] * [J] = [I * J].
endfm)
(omod TOK-RING{N :: NZNAT*}) is
 protecting NAT/{N} .
note Mode .
 subsort Nat/{N} < Oid .
ops wait critical : -> Mode .
msg tok : Nat/{N} -> Msg .
op init : -> Configuration .
op make-init : Nat/{N} -> Configuration .
class Proc | mode : Mode .
var I : Nat .
ceq init = tok([0]) make-init([I]) if s(I) := * .
ceq make-init([s(I)])
 = < [s(I)] : Proc | mode : wait > make-init([I])
 if I < * .
eq make-init([0]) = < [0] : Proc | mode : wait > .
r1 [enter] : tok([I]) < [I] : Proc | mode : wait >
endom)
The **TOK-RING** module satisfies the following two properties:

- **mutual exclusion**, and

- **guaranteed reentrance**, that is:

 - each process eventually reaches its critical section, and

 - it does so again after \(2 \times n\) steps.

There isn’t a single LTL formula stating each of these properties: they are **parametric** on \(n\). However, in Full Maude we can specify these properties by parametric formula definitions as follows:
(omod CHECK-TOK-RING\{N :: NZNAT*\} is
 inc TOK-RING\{N\} .
 inc MODEL-CHECKER .
 subsort Configuration < State .

 op inCrit : Nat/{N} -> Prop .
 op twoInCrit : -> Prop .

 var I : Nat .
 vars X Y : Nat/{N} .
 var C : Configuration .
 var F : Formula .

 eq < X : Proc | mode : critical > C |= inCrit(X) = true .
 |= twoInCrit = true .
op guaranteedReentrance : -> Formula.
op allProcessesReenter : Nat -> Formula.
op nextIter_ : Formula -> Formula.
op nextIterAux : Nat Formula -> Formula.

ceq guaranteedReentrance = allProcessesReenter(I) if s(I) := *.

eq allProcessesReenter(s(I))
 = (<> inCrit([s(I)])) /
 [] (inCrit([s(I)]) -> (nextIter inCrit([s(I)]))) /
 allProcessesReenter(I).

eq allProcessesReenter(0) = (<> inCrit([0])) /
 [] (inCrit([0]) -> (nextIter inCrit([0]))) .

eq nextIter F = nextIterAux(2 * *, F) .
eq nextIterAux(s I, F) = 0 nextIterAux(I, F) .
eq nextIterAux(0, F) = F .

dom)
We cannot model check these properties directly in their parameterized form. However, for each nonzero value n we can check the corresponding instance of these properties. For example, for $n = 5$ we define in Full Maude the view,

\[
\text{(view 5 from NZNAT* to NAT is}
\begin{align*}
&\quad \text{op * to term 5 .} \\
&\quad \text{endv)}
\end{align*}
\]

Then we can model check the mutual exclusion property for 5 processes as follows:

\[
\text{(red in CHECK-TOK-RING\{5\} : modelCheck(init,[] ~ twoInCrit) .)}
\]
result Bool :
true
In the same way, we can model check the guaranteed reentrance property for $n = 5$ by giving to Full Maude the command,

\[(\text{red in CHECK-TOK-RING(5) : modelCheck(init,[] guaranteedReentrance)}).\] result Bool :
true