Program Verification: Lecture 27

José Meseguer

Computer Science Department
University of Illinois at Urbana-Champaign
In the case of deterministic programs, we first studied the verification of declarative deterministic programs such as Maude functional modules. Then, in a sense, we reduced to this case the verification of imperative programs.

Indeed, we can specify the semantics of a deterministic imperative language \mathcal{L} as an equational theory $\mathcal{E}(\mathcal{L})$ (in fact, a Maude functional module).

Then, reasoning about the correctness of imperative programs in \mathcal{L} reduces (perhaps through decomposition by means of a Hoare logic) to proving inductive properties satisfied by the initial model $T_{\mathcal{E}(\mathcal{L})}$.
What should the analogous situation be in the case of concurrent imperative programs? We should of course specify the semantics of a concurrent imperative language \mathcal{L} as a rewrite theory $\mathcal{R}(\mathcal{L})$ (in fact, a Maude system module).

Then, the correctness of imperative programs in \mathcal{L} can be reduced to proving inductive properties satisfied by the initial model $(T_{\Sigma \mathcal{L}}/E_{\mathcal{L}}, \rightarrow_{\mathcal{R}_{\mathcal{L}}})$. If such properties are specified in temporal logic, then we can use methods such as model checking or deductive proof.

We can illustrate this general method by defining the rewriting logic semantics of a simple parallel language called PARALLEL.
The Rewriting Semantics of PARALLEL

*** A simple parallel language and its rewriting logic semantics.
*** Extends an even simpler language presented in ‘‘The Maude LTL
*** Model Checker’’ by Eker, Meseguer, and Sridaranarayanan,

fmod MEMORY is inc INT . inc QID .
 op null : -> Int? .
 op none : -> Memory .
 op __ : Memory Memory -> Memory [assoc comm id: none] .
 op [_,_] : Qid Int? -> Memory .
 op _in_ : Qid Memory -> Bool? .
 eq null + N? = null .
 eq null * N? = null .
 eq Q in [Q,N?] M = true .
endfm
(Equality test comparing the contents of a named memory location to an Int? value.)

```plaintext
fmod TESTS is
  inc MEMORY .
  sort Test .
  op _=_ : Qid Int? -> Test .
  op eval : Test Memory -> Bool .
  var Q : Qid .
  var M : Memory .
  ceq eval(Q = N?, M) = N? == null if Q in M =/= true .
endfm
```

(Syntax for arithmetic expressions, and their evaluation semantics. To avoid evaluation of expressions by themselves, which would happen even without a memory for integer subexpressions if we keep the usual syntax, the operators + and * are specified as constructors with syntax +' and *')
fmod EXPRESSION is
 inc MEMORY.
 sort Expression.
 subsorts Qid Int? < Expression.
 op _+’_ : Expression Expression -> Expression [ctor].
 op _*’_ : Expression Expression -> Expression [ctor].
 op eval : Expression Memory -> Int?.

 var Q : Qid.
 var M : Memory.
 vars N N’ : Int.
 var N? : Int?.
 vars E E’ : Expression.

 eq eval(N?, M) = N?.
 eq eval(Q, [Q, N?] M) = N?.
 ceq eval(Q,M) = null if Q in M =/= true.
 eq eval(E +’ E’, M) = eval(E,M) + eval(E’,M).
 eq eval(E *’ E’, M) = eval(E,M) * eval(E’,M).
endfm
**(Syntax for a trivial sequential language. We allow abstracting out program fragments as elements of sorts LoopingUserStatement and UserStatement. Elements of sort LoopingUserStatement abstract out potentially nonterminating program fragments, whereas elements of sort UserStatement but not of sort LoopingUserStatement abstract out terminating program fragments.)

fmod SEQUENTIAL is
 inc TESTS .
 inc EXPRESSION .

 sorts UserStatement LoopingUserStatement Program .
 subsort LoopingUserStatement < UserStatement < Program .
 op skip : -> Program .
 op _;_ : Program Program -> Program [prec 61 assoc id: skip] .
 op _:=_ : Qid Expression -> Program .
 op if_then_fi : Test Program -> Program .
 op while_do_od : Test Program -> Program .
 op repeat_forever : Program -> Program .
endfm
Using the above functional modules, we can then define our simple parallel language in a system module \textsc{Parallel}. The \textit{global state} is a \textit{triple} consisting of:

1. a “soup” (set) of processes;

2. the shared memory; and

3. a process identifier recording the last process that touched the memory or, in any event, performed some computation.

Processes themselves are \textit{pairs} having a process identifier and a program.
The Rewriting Semantics of PARALLEL (III)

mod PARALLEL is
 inc SEQUENTIAL .
 inc TESTS .

 sorts Pid Process Soup MachineState .
 subsort Process < Soup .
 subsort Int < Pid .
 op [_,_] : Pid Program -> Process .
 op empty : -> Soup .
 op {_,_,_,_} : Soup Memory Pid -> MachineState .
vars P R : Program .
var S : Soup .
var U : UserStatement .
var L : LoopingUserStatement .
vars I J : Pid .
var M : Memory .
var Q : Qid .
var T : Test .
var E : Expression .

rl
{[I, U ; R] | S, M, J} =>

rl
{[I, L ; R] | S, M, J} =>
{[I, L ; R] | S, M, I} .

rl
{[I, (Q := E) ; R] | S, [Q, X?] M, J} =>

{[I, R] | S, [Q,eval(E,[Q, X?] M)] M, I} .

crl
{[I, (Q := E) ; R] | S, M, J} =>

{[I, R] | S, [Q,eval(E,M)] M, I} if Q in M =/= true .
rl \{[I, \text{if } T \text{ then } P \text{ fi} ; R] \mid S, M, J\} \Rightarrow
\{[I, \text{if } \text{eval}(T, M) \text{ then } P \text{ else } \text{skip fi} ; R] \mid S, M, I\} .

rl \{[I, \text{while } T \text{ do } P \text{ od} ; R] \mid S, M, J\} \Rightarrow
\{[I, \text{if } \text{eval}(T, M) \text{ then } (P ; \text{while } T \text{ do } P \text{ od}) \text{ else } \text{skip fi} ; R]
\mid S, M, I\} .

rl \{[I, \text{repeat } P \text{ forever} ; R] \mid S, M, J\} \Rightarrow
\{[I, P ; \text{repeat } P \text{ forever} ; R] \mid S, M, I\} .

\textit{endm}
One of the earliest correct solutions to the mutual exclusion problem was given by Dekker with his algorithm. The algorithm assumes processes that execute concurrently on a shared memory machine and communicate with each other through shared variables.

There are two processes, p1 and p2. Process 1 sets a Boolean variable c1 to 1 to indicate that it wishes to enter its critical section. Process p2 does the same with variable c2. If one process, after setting its variable to 1 finds that the variable of its competitor is 0, then it enters its critical section rightaway. In case of a tie (both variables set to 1) the tie is broken using a variable turn that takes values in \{1, 2\}.

Dekker’s Mutex Algorithm
The code of process 1 in PARALLEL is as follows,

\begin{verbatim}
repeat
 c1 := 1 ;
 while c2 = 1 do
 if turn = 2 then
 c1 := 0 ;
 while turn = 2 do skip od ;
 c1 := 1
 fi
 od ;
crit ;
turn := 2 ;
c1 := 0 ;
rem1
forever .
\end{verbatim}
The code of process 2 is entirely symmetric:

```
repeat
    c2 := 1 ;
    while c1 = 1 do
        if turn = 1 then
            c2 := 0 ;
            while turn = 1 do skip od ;
            c2 := 1
        fi
    od ;
    crit ;
    turn := 1 ;
    c2 := 0 ;
    rem2
forever .
```
We can then define the two processes for Dekker’s algorithm and the desired initial state in the following module extending PARALLEL. Note that we assume that \texttt{crit} does terminate, whereas \texttt{rem} may not.

\begin{verbatim}
mod DEKKER is
 inc PARALLEL .
 subsort Int < Pid .
 op crit : -> UserStatement .
 op rem : -> LoopingUserStatement .
 ops p1 p2 : -> Program .
 op initialMem : -> Memory .
 op initial : -> MachineState .
\end{verbatim}
eq p1 =
 repeat
 'c1 := 1 ;
 while 'c2 = 1 do
 if 'turn = 2 then
 'c1 := 0 ;
 while 'turn = 2 do skip od ;
 'c1 := 1
 fi
 od ;
 crit ;
 'turn := 2 ;
 'c1 := 0 ;
 rem
 forever .
eq p2 =
 repeat
 'c2 := 1 ;
 while 'c1 = 1 do
 if 'turn = 1 then
 'c2 := 0 ;
 while 'turn = 1 do skip od ;
 'c2 := 1
 fi
 od ;
 crit ;
 'turn := 1 ;
 'c2 := 0 ;
 rem
 forever .

eq initialMem = ['c1, 0] ['c2, 0] ['turn, 1] .
eq initial = { [1, p1] | [2, p2], initialMem, 0 } .
endm
We need to define three state predicates parameterized by the process id: `enterCrit`, when the process is about to enter its critical section, `in-rem`, when the process is executing its remaining code fragment, and `exec`, when the process has just executed.

```plaintext
mod CHECK is inc DEKKER . inc MODEL-CHECKER .
   inc LTL-SIMPLIFIER . *** optional
   subsort MachineState < State .
   ops enterCrit in-rem exec : Pid -> Prop .
   var M : Memory .
   vars R : Program .
   var S : Soup .
   vars I J : Pid .
   eq {[I, crit ; R] | S, M, J} |= enterCrit(I) = true .
   eq {[I, rem ; R] | S, M, J} |= in-rem(I) = true .
   eq {S, M, J} |= exec(J) = true .
endm
```
The mutual exclusion property is satisfied:

reduce in CHECK : modelCheck(initial,[] ~ (enterCrit(1) \ enterCrit(2))) .
ModelChecker: Property automaton has 2 states.
ModelCheckerSymbol: Examined 263 system states.
rewrites: 1714 in 50ms cpu (50ms real) (34280 rewrites/second)
result Bool: true
Model Checking Dekker’s Algorithm (III)

But the **strong liveness property** that executing infinitely often implies entering one’s critical section infinitely often fails, as witnessed by the counterexample,

reduce in CHECK : modelCheck(initial,[]<> exec(1) -> []<> enterCrit(1)) .
ModelChecker: Property automaton has 3 states.
ModelCheckerSymbol: Examined 16 system states.
rewrites: 159 in 0ms cpu (0ms real) (~ rewrites/second)
result ModelCheckResult:
counterexample({[[1,repeat 'c1 := 1 ; while 'c2 = 1 do if 'turn = 2 then 'c1 := 0 ; while 'turn = 2 do skip od ; 'c1 := 1 fi od ; crit ; 'turn := 2 ; 'c1 := 0 ; rem forever] | [2,repeat 'c2 := 1 ; while 'c1 = 1 do if 'turn = 1 then 'c2 := 0 ; while 'turn = 1 do skip od ; 'c2 := 1 fi od ; crit ; 'turn := 1 ; 'c2 := 0 ; rem forever],[’c1,0] [’c2,0] [’turn,1],0},unlabeled}

...
Even the weaker liveness property that if both p_1 and p_2 execute infinitely often then both enter their critical sections infinitely often fails, due to possible looping in the remainder:

```
reduce in CHECK : modelCheck(initial, []<> exec(1) \ []<> exec(2) -> []<> enterCrit(1)
        \ []<> enterCrit(2)) .
```

ModelChecker: Property automaton has 7 states.
ModelCheckerSymbol: Examined 236 system states.
rewrites: 1972 in 50ms cpu (50ms real) (39440 rewrites/second)
result ModelCheckResult:
counterexample({[1,repeat 'c1 := 1 ; while 'c2 = 1 do
 if 'turn = 2 then 'c1 := 0 ; while 'turn = 2 do skip od ; 'c1 := 1 fi od ;
 crit ; 'turn := 2 ; 'c1 := 0 ; rem forever] | [2,repeat 'c2 := 1 ; while 'c1 = 1 do if 'turn = 1 then 'c2 := 0 ; while 'turn = 1 do skip od ; 'c2 := 1 fi od ;
 crit ; 'turn := 1 ; 'c2 := 0 ; rem forever],['c1,0] ['c2,0] ['turn,1],0},unlabeled}
...
However, the more subtle weak liveness property that if p1 and p2 both get to execute infinitely often, then if p1 is infinitely often out of its "rem" section, then p1 enters its critical section infinitely often holds; of course, the same holds for p2.

reduce in CHECK : modelCheck(initial,[]<> exec(1) \ []<> exec(2) -> []<> ~ in-rem(1)
 -> []<> enterCrit(1)) .
ModelChecker: Property automaton has 5 states.
ModelCheckerSymbol: Examined 263 system states.
rewrites: 2219 in 60ms cpu (70ms real) (36983 rewrites/second)
result Bool: true
A simple, yet interesting, program that we can also implement in PARALLEL is a “game,” suggested by J Moore, between two forever-looping processes accessing a shared variable ‘c that initially holds the value 1.

Each process loop reads twice the value of ‘c in two different local variables, and then writes the sum of those two local variables back into ‘c. There is no synchronization at all between the processes.

Two interesting questions are: (1) which values can ‘c hold, depending on the different strategies in this game? and (2) which values can ‘c hold if only one of the processes is actually running?
The code for these processes and the relevant initial states can be defined as follows,

mod THREAD-GAME is
 inc PARALLEL .
 ops p1 p2 : -> Program .
 ops init init1 init2 : -> MachineState .

 eq p1 =
 repeat
 'a1 := 'c ;
 'b1 := 'c ;
 'c := 'a1 + 'b1
 forever .
eq p2 =
 repeat
 'a2 := 'c ;
 'b2 := 'c ;
 'c := 'a2 +' 'b2
 forever .

eq init = { [1, p1] | [2, p2], ['c, 1], 0 } .
eq init1 = { [1, p1], ['c, 1], 0 } .
eq init2 = { [2, p2], ['c, 1], 0 } .
endm
We can use the search command in Maude to gain some experimental evidence about the first question,

Solution 1 (state 0)
states: 1 rewrites: 3 in 0ms cpu (0ms real) (~ rewrites/second)
S:Soup --> [1,repeat 'a1 := 'c ; 'b1 := 'c ; 'c := ('a1 +' 'b1) forever] | [2,
 repeat 'a2 := 'c ; 'b2 := 'c ; 'c := ('a2 +' 'b2) forever]
M:Memory --> none
J:Pid --> 0

Solution 1 (state 13)
states: 14 rewrites: 38 in 10ms cpu (10ms real) (3800 rewrites/second)
S:Soup --> [1,repeat 'a1 := 'c ; 'b1 := 'c ; 'c := ('a1 +' 'b1) forever] | [2,
 repeat 'a2 := 'c ; 'b2 := 'c ; 'c := ('a2 +' 'b2) forever]
M:Memory --> ['a1,1] ['b1,1]
J:Pid --> 1

Solution 1 (state 69)
states: 70 rewrites: 326 in 0ms cpu (0ms real) (~ rewrites/second)
S:Soup --> [1,repeat ’a1 := ’c ; ’b1 := ’c ; ’c := (’a1 +’ ’b1) forever] | [2,
 repeat ’a2 := ’c ; ’b2 := ’c ; ’c := (’a2 +’ ’b2) forever]
M:Memory --> [’a1,1] [’b1,1] [’a2,1] [’b2,2]
J:Pid --> 2

search [1] in THREAD-GAME : init =>* {S:Soup,M:Memory [’c,4],J:Pid}.
states: 62 rewrites: 282 in 10ms cpu (10ms real) (28200 rewrites/second)
S:Soup --> [1,repeat ’a1 := ’c ; ’b1 := ’c ; ’c := (’a1 +’ ’b1) forever] | [2,
 repeat ’a2 := ’c ; ’b2 := ’c ; ’c := (’a2 +’ ’b2) forever]
M:Memory --> [’a1,2] [’b1,2]
J:Pid --> 1

Solution 1 (state 275)
states: 276 rewrites: 1437 in 30ms cpu (30ms real) (47900 rewrites/second)
S:Soup --> [1, repeat 'a1 := 'c ; 'b1 := 'c ; 'c := ('a1 + ' b1) forever] | [2, repeat 'a2 := 'c ; 'b2 := 'c ; 'c := ('a2 + ' b2) forever]
M:Memory --> ['a1,2] ['b1,3] ['a2,1] ['b2,2]
J:Pid --> 1

Solution 1 (state 243)
states: 244 rewrites: 1278 in 20ms cpu (20ms real) (63900 rewrites/second)
S:Soup --> [1, repeat 'a1 := 'c ; 'b1 := 'c ; 'c := ('a1 + ' b1) forever] | [2, repeat 'a2 := 'c ; 'b2 := 'c ; 'c := ('a2 + ' b2) forever]
M:Memory --> ['a1,2] ['b1,2] ['a2,2] ['b2,4]
J:Pid --> 2

Solution 1 (state 912)
states: 913 rewrites: 4998 in 100ms cpu (100ms real) (49980 rewrites/second)
S:Soup --> [1, repeat 'a1 := 'c ; 'b1 := 'c ; 'c := ('a1 + ' b1) forever] | [2, repeat 'a2 := 'c ; 'b2 := 'c ; 'c := ('a2 + ' b2) forever]
M:Memory --> ['a1,4] ['b1,3] ['a2,1] ['b2,2]
J:Pid --> 1

27

states: 236 rewrites: 1234 in 30ms cpu (30ms real) (41133 rewrites/second)
S:Soup -> [1,repeat ’a1 := ’c ; ’b1 := ’c ; ’c := (’a1 +’ ’b1) forever] | [2,
repeat ’a2 := ’c ; ’b2 := ’c ; ’c := (’a2 +’ ’b2) forever]
M:Memory --> [’a1,4] [’b1,4]
J:Pid --> 1

Solution 1 (state 883)
states: 884 rewrites: 4846 in 90ms cpu (90ms real) (53844 rewrites/second)
S:Soup -> [1,repeat ’a1 := ’c ; ’b1 := ’c ; ’c := (’a1 +’ ’b1) forever] | [2,
repeat ’a2 := ’c ; ’b2 := ’c ; ’c := (’a2 +’ ’b2) forever]
M:Memory --> [’a1,3] [’b1,3] [’a2,3] [’b2,6]
J:Pid --> 2

Solution 1 (state 829)
states: 830 rewrites: 4511 in 90ms cpu (90ms real) (50122 rewrites/second)
S:Soup --> [1,repeat ’a1 := ’c ; ’b1 := ’c ; ’c := (’a1 +’ ’b1) forever] | [2,
repeat ’a2 := ’c ; ’b2 := ’c ; ’c := (’a2 +’ ’b2) forever]
M:Memory --> ['a1,4] ['b1,6] ['a2,2] ['b2,4]
J:Pid --> 1

...

Solution 1 (state 68974)
states: 68975 rewrites: 408394 in 8960ms cpu (9020ms real) (45579
 rewrites/second)
S:Soup --> [1,repeat 'a1 := 'c ; 'b1 := 'c ; 'c := ('a1 +' 'b1) forever] | [2,
 repeat 'a2 := 'c ; 'b2 := 'c ; 'c := ('a2 +' 'b2) forever]
M:Memory --> ['a1,48] ['b1,51] ['a2,3] ['b2,48]
J:Pid --> 1
We can likewise use the \texttt{rewrite} command in Maude to gain some experimental evidence about the second question,

\begin{verbatim}
--->
{empty | [1,('a1 := 'c ; 'b1 := 'c ; 'c := ('a1 +' 'b1)) ; repeat 'a1 := 'c ;
'b1 := 'c ; 'c := ('a1 +' 'b1) forever ; skip],['c,1],1}

--->
{empty | [1,'b1 := 'c ; 'c := ('a1 +' 'b1) ; repeat 'a1 := 'c ; 'b1 := 'c ; 'c
:= ('a1 +' 'b1) forever],['c,1] ['a1,eval('c, ['c,1])],1}

--->
{empty | [1,'c := ('a1 +' 'b1) ; repeat 'a1 := 'c ; 'b1 := 'c ; 'c := ('a1 +'
'b1) forever],([['a1,1] ['c,1]) ['b1,eval('c, ['a1,1] ['c,1])],1}
\end{verbatim}

{empty | [1, repeat 'a1 := 'c ; 'b1 := 'c ; 'c := ('a1 + 'b1) forever], ([a1,1] [b1,1]) [c, eval('a1 + 'b1, ([a1,1] [b1,1]) [c,1])], 1}

{empty | [1, ('a1 := 'c ; 'b1 := 'c ; 'c := ('a1 + 'b1)) ; repeat 'a1 := 'c ;
'b1 := 'c ; 'c := ('a1 + 'b1) forever ; skip], [a1,1] [c,2] [b1,1], 1}

{empty | [1, 'b1 := 'c ; 'c := ('a1 + 'b1) ; repeat 'a1 := 'c ; 'b1 := 'c ; 'c := ('a1 + 'b1) forever], ([c,2] [b1,1]) [a1, eval('c, ([c,2] [b1,1]) [a1,1])], 1}

{empty | [1, 'c := ('a1 + 'b1) ; repeat 'a1 := 'c ; 'b1 := 'c ; 'c := ('a1 + 'b1) forever], ([a1,2] [c,2]) [b1, eval('c, ([a1,2] [c,2]) [b1,1])], 1}

{empty | [1, repeat 'a1 := 'c ; 'b1 := 'c ; 'c := ('a1 + 'b1) forever], ([a1,2] [b1,2]) [c, eval('a1 + 'b1, ([a1,2] [b1,2]) [c,2])], 1}
--->
{empty | [1, ('a1 := 'c ; 'b1 := 'c ; 'c := ('a1 + ' b1)) ; repeat 'a1 := 'c ;
'b1 := 'c ; 'c := ('a1 + ' b1) forever ; skip], ['a1,2] ['c,4] ['b1,2],1}

--->
{empty | [1, 'b1 := 'c ; 'c := ('a1 + ' b1) ; repeat 'a1 := 'c ; 'b1 := 'c ; 'c := ('a1 +
'b1) forever], [['c,4] ['b1,2]] ['a1,eval('c, [['c,4] ['b1,2]] ['a1,2])],1}

--->
{empty | [1, 'c := ('a1 + ' b1) ; repeat 'a1 := 'c ; 'b1 := 'c ; 'c := ('a1 +
'b1) forever], [['a1,4] ['c,4]] ['b1,eval('c, [['a1,4] ['c,4]] ['b1,2])],1}

--->
{empty | [1,repeat 'a1 := 'c ; 'b1 := 'c ; 'c := ('a1 + ' b1) forever], [['a1,4]
['b1,4]] ['c,eval('a1 + ' b1, [['a1,4] ['b1,4]] ['c,4])],1}

--->
{empty | [1, ('a1 := 'c ; 'b1 := 'c ; 'c := ('a1 + ' b1)) ; repeat 'a1 := 'c ;
'b1 := 'c ; 'c := ('a1 + ' b1) forever ; skip], ['a1,4] ['c,8] ['b1,4],1}
{empty | [1,'b1 := 'c ; 'c := ('a1 +' 'b1) ; repeat 'a1 := 'c ; 'b1 := 'c ; 'c := ('a1 +' 'b1) forever],(['c,8] ['b1,4]) ['a1,eval('c, (['c,8] ['b1,4]) ['a1,4])],1}

{empty | [1,'c := ('a1 +' 'b1) ; repeat 'a1 := 'c ; 'b1 := 'c ; 'c := ('a1 +' 'b1) forever],(['a1,8] ['c,8]) ['b1,eval('c, (['a1,8] ['c,8]) ['b1,4])],1}

{empty | [1,repeat 'a1 := 'c ; 'b1 := 'c ; 'c := ('a1 +' 'b1) forever],(['a1,8] ['b1,8]) ['c,eval('a1 +' 'b1, (['a1,8] ['b1,8]) ['c,8])],1}

{empty | [1,('a1 := 'c ; 'b1 := 'c ; 'c := ('a1 +' 'b1)) ; repeat 'a1 := 'c ; 'b1 := 'c ; 'c := ('a1 +' 'b1) forever ; skip],[a1,8] [c,16] ['b1,8]],1}

{empty | [1,'b1 := 'c ; 'c := ('a1 +' 'b1) ; repeat 'a1 := 'c ; 'b1 := 'c ; 'c := ('a1 +' 'b1) forever],(['c,16] ['b1,8]) ['a1,eval('c, (['c,16] ['b1,8]) ['a1,8])],1}
--->
{empty | [1,'c := ('a1 +' 'b1); repeat 'a1 := 'c ; 'b1 := 'c ; 'c := ('a1 +'
'b1) forever],([’a1,16] [’c,16]) [’b1,eval(’c, ([’a1,16] [’c,16]) [’b1,
8])],1}

--->
{empty | [1,repeat 'a1 := 'c ; 'b1 := 'c ; 'c := ('a1 +' 'b1) forever],([’a1,
16] [’b1,16]) [’c,eval(’a1 +’ ’b1, ([’a1,16] [’b1,16]) [’c,16])],1}

result MachineState: {[1,repeat 'a1 := 'c ; 'b1 := 'c ; 'c := ('a1 +' 'b1)
forever],[’a1,16] [’c,32] [’b1,16],1}
Maude>
The above experimental evidence suggests the following two conjectures:

1. when both processes are running, then for any $n \geq 1$ there is an execution such that c eventually holds n

2. when only one process is running, then c will initially hold 1, and then for each $n \geq 0$ if it holds 2^n, it will continue holding that value until it eventually holds 2^{n+1}.

Can you prove it? (Note: Any precise mathematical proof will do; do not even need to use temporal logic).
PARALLEL is a toy language. Can the rewriting logic approach scale up to real concurrent languages? The answer is “yes.”

We can define the semantics of a concurrent programming language L by a rewrite theory $\mathcal{R}_L = (\Sigma_L, E_L, R_L)$, where:

- Σ_L specifies L’s syntax and the auxiliary operators needed in semantic definitions (memory, environment, etc.)

- the equations E_L specify the semantics of all the deterministic features of L and of the auxiliary semantic operations.

- the rewrite rules R_L specify the semantics of all the concurrent features of L.

Once a definition of a language is given in Maude, we get an **interpreter for free** and we also get:

1. a **semi-decision procedure** to find failures of safety properties in a (possibly infinite-state) concurrent program using Maude’s `search` command;

2. an **LTL model checker** for finite-state programs or program abstractions;

3. a **theorem prover** (Maude’s ITP) that can be used to semi-automatically prove programs correct.
Java has been recently defined at UIUC by Feng Chen, using a CPS semantics as above, with 600 equations and 15 rewrite rules. Azadeh Farzan has developed a more direct specification for the JVM, not based on continuations, with around 300 equations and 40 rewrite rules.

Both the Java and the JVM specifications include multithreading, inheritance, polymorphism, object references, and dynamic object allocation. Native methods and most Java libraries are not supported at present.
Based on Maude rewriting logic specifications of Java and JVM, we are developing **JavaFAN** (Java Formal ANalyzer), a tool in which Java and JVM code can be executed and analyzed. The following figure shows the architecture of JavaFAN.
Performance of JavaFAN

<table>
<thead>
<tr>
<th>Tests</th>
<th>JVM</th>
<th>Java</th>
<th>Other</th>
</tr>
</thead>
<tbody>
<tr>
<td>Remote Agent (s)</td>
<td>0.3</td>
<td>0.1</td>
<td>2 (Stanford)</td>
</tr>
<tr>
<td>2-stage Pipeline</td>
<td>17m</td>
<td>—</td>
<td>100m+ (Stanford)</td>
</tr>
<tr>
<td>DinPhil (4)</td>
<td>0.64</td>
<td>1.2</td>
<td>—</td>
</tr>
<tr>
<td>DinPhil (6)</td>
<td>33.3</td>
<td>81.7</td>
<td>—</td>
</tr>
<tr>
<td>DinPhil (8)</td>
<td>13.7m</td>
<td>98m</td>
<td>—</td>
</tr>
<tr>
<td>DinPhil (9)</td>
<td>803.2m</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Deadlock-free DinPhil (5)</td>
<td>3.2m</td>
<td>19.2</td>
<td>∞ (JPF)</td>
</tr>
<tr>
<td>Deadlock-free DinPhil (7)</td>
<td>686.4m</td>
<td>27m</td>
<td>∞ (JPF)</td>
</tr>
<tr>
<td>Thread Game (100) (s)</td>
<td>17.1</td>
<td>6.6</td>
<td>—</td>
</tr>
<tr>
<td>Thread Game (1000) (s)</td>
<td>10.1m</td>
<td>5.1m</td>
<td>—</td>
</tr>
</tbody>
</table>
There are essentially two reasons for JavaFAN to compare favorably with more conventional Java analysis tools: (1) the high performance of Maude for execution, search, and model checking; and (2) optimized equational and rule definitions.

The second reason is the use of performance-enhancing specification techniques at the Maude level, including:

- expressing as equations E the semantics of all deterministic computations, and as rules R only concurrent computations.
- favoring unconditional equations and rules over less efficient conditional versions.
- using a continuation passing style in semantic equations.
Other Language Case Studies

Similar positive experience in using rewriting logic and Maude to give semantics definitions of concurrent programming languages and getting interpreters and program analysis tools for free for those languages is reported in several papers, including the surveys by Meseguer and Roșu in: (i) Proc. IJCAR’04, Springer LNCS 3097; and (ii) Proc. SOS’05, Elsevier ENTCS.

In particular, semantic definitions have already been given in Maude for substantial subsets of the following languages: ABEL, bc, Beta, CCS, CIAO, CML, Creol, ELOTOS, Haskell, Lisp, LLVM, MSR, Pi-Calculus, Pict, PLAN, Python, Ruby, SIMPLE, Verilog, and Smalltalk. And full definitions have been given in K-Maude to C and Scheme.