José Meseguer

Computer Science Department
University of Illinois at Urbana-Champaign
Decidability of Propositional LTL

It is well-known that, for any computable Kripke structure $\mathcal{A} = (A, \rightarrow, \mathcal{L})$, any state $a \in A$ such that the set

$$\text{Reach}_\mathcal{A}(a) = \{x \in A \mid \exists \pi \in \text{Path}(\mathcal{A}) \exists n \in \mathbb{N} \text{ s.t. } \pi(0) = a \land \pi(n) = x\}$$

of states reachable from a in \mathcal{A} is finite, and any LTL formula $\varphi \in \text{LTL}(\text{AP})$, where $L : A \rightarrow \mathcal{P}(\text{AP})$, there is a decision procedure that can effectively decide the satisfaction relation,

$$\mathcal{A}, a \models_{\text{LTL}} \varphi.$$

Furthermore, if $\mathcal{A}, a \not\models_{\text{LTL}} \varphi$, the decision procedure will exhibit a counterexample, that is, a path not satisfying φ.
A decision procedure of this kind is called a model checking algorithm, since it checks whether φ holds in the model \mathcal{A} with initial state a. Detailed discussion of such algorithms for a variety of temporal logics such as LTL, CTL, and CTL^* is beyond the scope of this course; see the excellent text “Model Checking” by Clark, Grumberg, and Peled. There are two rough classes of model checking algorithms:

- **explicit-state** model checking algorithms, that explicitly search the state space of \mathcal{A} to find a counterexample;
- **symbolic model checking** algorithms, that use a symbolic representation of sets of states (BDDs or other representations) to compute the fixpoint of the transition relation, i.e., the set $\text{Reach}_{\mathcal{A}}(a)$.
Suppose that, given a system module M specifying a rewrite theory $\mathcal{R} = (\Sigma, E, \phi, R)$, we have:

- chosen a kind k in M as our kind of states;
- defined some state predicates Π and their semantics in a module, say M-PRED, protecting M by the method already explained in this lecture.

Then, as explained earlier, this defines a Kripke structure $\mathcal{K}(\mathcal{R}, k)_{\Pi}$ on the set of atomic propositions AP_{Π}. Given an initial state $[t] \in T_{\Sigma/E,k}$ and an LTL formula $\varphi \in LTL(AP_{\Pi})$ we would like to have a procedure to decide the satisfaction relation,
By applying the general LTL decidability results to our Kripke structure $\mathcal{K}(\mathcal{R}, k)_{\Pi}$, this satisfaction relation becomes decidable if two conditions hold:

1. The set of states in $T_{\Sigma/E,k}$ that are reachable from $[t]$ by rewriting is finite.

2. The rewrite theory $\mathcal{R} = (\Sigma, E, \phi, R)$ specified by \mathcal{M} plus the equations D defining the predicates Π are such that:
• both E and $E \cup D$ are (ground) Church-Rosser and terminating, perhaps modulo some axioms A, and

• R is (ground) coherent relative to E (again, perhaps modulo some axioms A).

Under these assumptions, both the state predicates Π and the transition relation \rightarrow^1_R are computable and, given the finite reachability assumption, we can then settle the above satisfaction problem using a model checking procedure. Specifically, Maude uses an on-the-fly LTL model checking procedure of the style described by Clark, Grumberg, and Peled.
The basis of this procedure is the following. Each LTL formula φ has an associated Büchi automaton B_φ whose acceptance ω-language is exactly that of the behaviors satisfying φ. We can then reduce the satisfaction problem

$$K(\mathcal{R}, k)^\Pi, [t] \models \varphi$$

to the emptiness problem of the language accepted by the synchronous product of $B_{\neg \varphi}$ and (the Büchi automaton associated to) $(K(\mathcal{R}, k)^\Pi, [t])$. The formula φ is satisfied iff such a language is empty. The model checking procedure checks emptiness by looking for a counterexample, that is, an infinite computation belonging to the language recognized by the synchronous product.
This makes clear our interest in obtaining the negative normal form of a formula $\neg\varphi$, since we need it to build the Büchi automaton $B_{\neg\varphi}$.

For efficiency purposes we need to make $B_{\neg\varphi}$ as small as possible. The following module LTL-SIMPLIFIER (also in the model-checker.maude file) tries to further simplify the negative normal form of the formula $\neg\varphi$ in the hope of generating a smaller Büchi automaton $B_{\neg\varphi}$. This module is optional (the user may choose to include it or not when doing model checking) but tends to help building a smaller $B_{\neg\varphi}$.
fmod LTL-SIMPLIFIER is
including LTL.

*** The simplifier is based on:
*** Kousha Etessami and Gerard J. Holzman,
*** We use the Maude sort system to do much of the work.

sorts TrueFormula FalseFormula PureFormula PE-Formula PU-Formula.
subsort TrueFormula FalseFormula < PureFormula <
PE-Formula PU-Formula < Formula.

op True : -> TrueFormula [ctor ditto].
op False : -> FalseFormula [ctor ditto].
op _/
_ : PE-Formula PE-Formula -> PE-Formula [ctor ditto].
op _/
_ : PU-Formula PU-Formula -> PU-Formula [ctor ditto].
op _/
_ : PureFormula PureFormula -> PureFormula [ctor ditto].
op \lor_ : PE-Formula PE-Formula \rightarrow PE-Formula [ctor ditto] .
op \lor_ : PU-Formula PU-Formula \rightarrow PU-Formula [ctor ditto] .
op \lor_ : PureFormula PureFormula \rightarrow PureFormula [ctor ditto] .

op \land_ : PE-Formula PE-Formula \rightarrow PE-Formula [ctor ditto] .
op \land_ : PU-Formula PU-Formula \rightarrow PU-Formula [ctor ditto] .

op \land_ : PureFormula PureFormula \rightarrow PureFormula [ctor ditto] .

op \land_ : PE-Formula \rightarrow PE-Formula [ctor ditto] .
op \land_ : PU-Formula \rightarrow PU-Formula [ctor ditto] .
op \land_ : PureFormula \rightarrow PureFormula [ctor ditto] .

op \land_ : FalseFormula Formula \rightarrow PU-Formula [ctor ditto] .

ts vars p q r s : Formula .

var pe : PE-Formula .
var pu : PU-Formula .
var pr : PureFormula .
*** Rules 1, 2 and 3; each with its dual.

\(\text{eq } (p U r) \land (q U r) = (p \land q) U r\).
\(\text{eq } (p R r) \lor (q R r) = (p \lor q) R r\).
\(\text{eq } (p U q) \lor (p U r) = p U (q \lor r)\).
\(\text{eq } (p R q) \lor (p R r) = p R (q \lor r)\).
\(\text{eq } \text{True} U (p U q) = \text{True} U q\).
\(\text{eq } \text{False} R (p R q) = \text{False} R q\).

*** Rules 4 and 5 do most of the work.
\(\text{eq } p U p e = p e\).
\(\text{eq } p R p u = p u\).

*** An extra rule in the same style.
\(\text{eq } 0 R r = r\).

*** We also use the rules from:
*** Fabio Somenzi and Roderick Bloem,
*** "Efficient Buchi Automata from LTL Formulae",
*** that are not subsumed by the previous system.
*** Four pairs of duals.

eq 0 p \land 0 q = 0 (p \land q).
eq 0 p \lor 0 q = 0 (p \lor q).
eq 0 p U 0 q = 0 (p U q).
eq 0 p R 0 q = 0 (p R q).
eq True U 0 p = 0 (True U p).
eq False R 0 p = 0 (False R p).
eq (False R (True U p)) \lor (False R (True U q)) =
 False R (True U (p \lor q)).
eq (True U (False R p)) \land (True U (False R q)) =
 True U (False R (p \land q)).

*** \leq relation on formula

op _\leq_ : Formula Formula \rightarrow Bool [prec 75].

eq p \leq p = true.
eq False \leq p = true.
eq p \leq True = true.
\ceq p \leq (q \land r) = true if (p \leq q) \land (p \leq r).
\ceq p \leq (q \lor r) = true if p \leq q.
ceq (p \(\land\) q) \(\leq\) r = true if \(p \leq r\).

ceq (p \(\lor\) q) \(\leq\) r = true if \((p \leq r) \land (q \leq r)\).

ceq p \(\leq\) (q U r) = true if \(p \leq r\).

ceq (p R q) \(\leq\) r = true if \(q \leq r\).

ceq (p U q) \(\leq\) r = true if \((p \leq r) \land (q \leq r)\).

ceq p \(\leq\) (q R r) = true if \((p \leq q) \land (p \leq r)\).

ceq (p U q) \(\leq\) (r U s) = true if \((p \leq r) \land (q \leq s)\).

ceq (p R q) \(\leq\) (r R s) = true if \((p \leq r) \land (q \leq s)\).

*** condition rules depending on \(\leq\) relation

ceq p \(\land\) q = p if \(p \leq q\).

ceq p \(\lor\) q = q if \(p \leq q\).

ceq p \(\land\) q = False if \(p \leq \neg q\).

ceq p \(\lor\) q = True if \(\neg p \leq q\).

ceq p U q = q if \(p \leq q\).

ceq p R q = q if \(q \leq p\).

ceq p U q = True U q if \(p =/= True \land \neg q \leq p\).

ceq p R q = False R q if \(p =/= False \land q \leq \neg p\).

ceq p U (q U r) = q U r if \(p \leq q\).

ceq p R (q R r) = q R r if \(q \leq p\).
Suppose that all the requirements listed above to perform model checking are satisfied. How do we then model check a given LTL formula in Maude for a given initial state $[t]$ in a module M? We define a new module, say M–CHECK, according to the following pattern:

```
mod M-CHECK is
  protecting M-PREDS .
  including MODEL-CHECKER .
  including LTL-SIMPLIFIER . *** optional
  op init : -> k . *** optional
  eq init = t . *** optional
endm
```

The declaration of a constant `init` of the kind of states is not necessary: it is a matter of convenience, since the initial state t may be a large term.
The module MODEL-CHECKER is as follows.

fmod MODEL-CHECKER is protecting QID . including SATISFACTION .
including LTL .
subsort Prop < Formula .

*** transitions and results
sorts RuleName Transition TransitionList ModelCheckResult .
subsort Qid < RuleName .
subsort Transition < TransitionList .
subsort Bool < ModelCheckResult .
ops unlabeled deadlock : -> RuleName .
op {_,_} : State RuleName -> Transition [ctor] .
op nil : -> TransitionList [ctor] .
op modelCheck : State Formula ~> ModelCheckResult [special (...)] .
endfm
The Maude Model Checker (VIII)

Its key operator is `modelCheck` (whose special attribute has been omitted here), which takes a state and an LTL formula and returns either the Boolean `true` if the formula is satisfied, or a counterexample when it is not satisfied.

Let us illustrate the use of this operator with our MUTEX example. Following the pattern described above, we can define the module

```maude
mod MUTEX-CHECK is
  protecting MUTEX-PREDS .
  including MODEL-CHECKER .
  including LTL-SIMPLIFIER .
  ops initial1 initial2 : -> Conf .
  eq initial1 = $ [a,wait] [b,wait] .
  eq initial2 = * [a,wait] [b,wait] .
endm
```
We are then ready to model check different LTL properties of MUTEX. The first obvious property to check is mutual exclusion:

Maude> red modelCheck(initial1, [] ~(crit(a) \ crit(b))) .
reduce in MUTEX-CHECK : modelCheck(initial1, []~ (crit(a) \ crit(b))) .
rewrites: 18 in 10ms cpu (10ms real) (1800 rewrites/second)
result Bool: true

Maude> red modelCheck(initial2, [] ~(crit(a) \ crit(b))) .
reduce in MUTEX-CHECK : modelCheck(initial2, []~ (crit(a) \ crit(b))) .
rewrites: 12 in 0ms cpu (0ms real) (~ rewrites/second)
result Bool: true
We can also model check the strong liveness property that if a process waits infinitely often, then it is in its critical section infinitely often:

Maude> red modelCheck(initial1, ([] <> wait(a)) -> ([] <> crit(a))) .
reduce in MUTEX-CHECK : modelCheck(initial1, []<> wait(a) -> []<> crit(a)) .
rewrites: 76 in 0ms cpu (0ms real) (~ rewrites/second)
result Bool: true

Maude> red modelCheck(initial1, ([] <> wait(b)) -> ([] <> crit(b))) .
reduce in MUTEX-CHECK : modelCheck(initial1, []<> wait(b) -> []<> crit(b)) .
rewrites: 76 in 0ms cpu (0ms real) (~ rewrites/second)
result Bool: true

Maude> red modelCheck(initial2, ([] <> wait(a)) -> ([] <> crit(a))) .
reduce in MUTEX-CHECK : modelCheck(initial2, []<> wait(a) -> []<> crit(a)) .
rewrites: 68 in 10ms cpu (10ms real) (6800 rewrites/second)
result Bool: true

Maude> red modelCheck(initial2, ([] <> wait(b)) -> ([] <> crit(b))) .
reduce in MUTEX-CHECK : modelCheck(initial2, []<> wait(b) -> []<> crit(b)) .
rewrites: 68 in 0ms cpu (0ms real) (~ rewrites/second)
result Bool: true
Of course, not all properties are true. Therefore, instead of a success we can get a **counterexample** showing why a property fails. Suppose that we want to check whether, beginning in the state `initial1`, process `b` will always be waiting. We then get the counterexample:

```
Maude> red modelCheck(initial1, [] wait(b)) .
reduce in MUTEX-CHECK : modelCheck(initial1, [] wait(b)) .
rewrites: 14 in 10ms cpu (10ms real) (1400 rewrites/second)
result ModelCheckResult:
  counterexample({$ [a,wait] [b,wait],’a-enter}$
      {[a,critical] [b,wait],’a-exit}
      {* [a,wait] [b,wait],’b-enter},
      {[a,wait] [b,critical],’b-exit}
      {$ [a,wait] [b,wait],’a-enter}$
      {[a,critical] [b,wait],’a-exit}
      {* [a,wait] [b,wait],’b-enter})
```
The main counterexample term constructors are:

\[
\begin{align*}
\text{op } \{_,_\} &: \text{State RuleName } \to \text{Transition} . \\
\text{op nil} &: \to \text{TransitionList [ctor]} . \\
\text{op } __ &: \text{TransitionList TransitionList } \to \text{TransitionList [ctor assoc id: nil]} . \\
\text{op counterexample} &: \text{TransitionList TransitionList } \to \text{ModelCheckResult [ctor]} .
\end{align*}
\]

A counterexample is a pair consisting of two lists of transitions: the first is a finite path beginning in the initial state, and the second describes a loop. This is because, if an LTL formula φ is not satisfied by a finite Kripke structure, it is always possible to find a counterexample for φ having the form of a path of transitions followed by a cycle. Note that each transition is represented as a pair, consisting of a state and the label of the rule applied to reach the next state.
Consider the following TOK-RING module,

(fth NZNAT* is
 protecting NAT .
 op * : -> NzNat .
endfth)

(fmod NAT/{N :: NZNAT*} is
 sort Nat/{N} .
 op ‘[’ : Nat -> Nat/{N} .
 op _+_ : Nat/{N} Nat/{N} -> Nat/{N} .
 op _*_ : Nat/{N} Nat/{N} -> Nat/{N} .
 vars I J : Nat .
 ceq [I] = [I rem *] if I >= * .
 eq [I] + [J] = [I + J] .
 eq [I] * [J] = [I * J] .
endfm)
(omod TOK-RING{N :: NZNAT*}) is
 protecting NAT/{N} .
 sort Mode .
 subsort Nat/{N} < Oid .
 ops wait critical : -> Mode .
 msg tok : Nat/{N} -> Msg .
 op init : -> Configuration .
 op make-init : Nat/{N} -> Configuration .
 class Proc | mode : Mode .
 var I : Nat .
 ceq init = tok([0]) make-init([I]) if s(I) := * .
 ceq make-init([s(I)])
 = < [s(I)] : Proc | mode : wait > make-init([I])
 if I < * .
 eq make-init([0]) = < [0] : Proc | mode : wait > .
 rl [enter] : tok([I]) < [I] : Proc | mode : wait >
endom)
The TOK-RING module satisfies the following two properties:

- **mutual exclusion**, and

- **guaranteed reentrance**, that is:
 - each process eventually reaches its critical section, and
 - it does so again after $2 \times n$ steps.

There isn’t a single LTL formula stating each of these properties: they are **parametric** on n. However, in Full Maude we can specify these properties by parametric formula definitions as follows:
(omod CHECK-TOK-RING{N :: NZNAT*} is
 inc TOK-RING{N} .
 inc MODEL-CHECKER .
 subsort Configuration < State .

 op inCrit : Nat/{N} -> Prop .
 op twoInCrit : -> Prop .

 var I : Nat .
 vars X Y : Nat/{N} .
 var C : Configuration .
 var F : Formula .

 eq < X : Proc | mode : critical > C |= inCrit(X) = true .
 |= twoInCrit = true .

Model Checking TOK-RING (III)
op guaranteedReentrance : -> Formula .
op allProcessesReenter : Nat -> Formula .
op nextIter_ : Formula -> Formula .
op nextIterAux : Nat Formula -> Formula .

c eq guaranteedReentrance = allProcessesReenter(I) if s(I) := * .

eq allProcessesReenter(s(I))
 = (<> inCrit([s(I)])) /\
 [] (inCrit([s(I)]) -> (nextIter inCrit([s(I)]))) /\
 allProcessesReenter(I) .
eq allProcessesReenter(0) = (<> inCrit([0])) /\
 [] (inCrit([0]) -> (nextIter inCrit([0]))) .

eq nextIter F = nextIterAux(2 ** *, F) .
eq nextIterAux(s I, F) = 0 nextIterAux(I, F) .
eq nextIterAux(0, F) = F .

endom)
We cannot model check these properties directly in their parameterized form. However, for each nonzero value n we can check the corresponding instance of these properties. For example, for $n = 5$ we define in Full Maude the view,

\begin{verbatim}
(view 5 from NZNAT* to NAT is
 op * to term 5 .
endv)
\end{verbatim}

Then we can model check the mutual exclusion property for 5 processes as follows:

\begin{verbatim}
(red in CHECK-TOK-RING{5} : modelCheck(init,[] ~ twoInCrit) .)
result Bool :
 true
\end{verbatim}
In the same way, we can model check the *guaranteed reentrance* property for $n = 5$ by giving to Full Maude the command,

\[\text{(red in CHECK-TOK-RING(5) : modelCheck(init,[], guaranteedReentrance) .)}\]
\[\text{result Bool : true}\]