Program Verification: Lecture 24

José Meseguer

University of Illinois
at Urbana-Champaign
Case Analysis Rule

\[\{ u_1, \ldots, u_k \} \subseteq T_{\Omega}(X) \text{ s.a pattern set for sort } s \text{ iff } T_{\Omega}(s) = \bigcup_{1 \leq l \leq k} \{ u_l \rho \mid \rho \in [X \to T_{\Omega}] \}. \]

Example. \{0, s(x)\} and \{0, s(0), s(s(y))\} are pattern sets for \textit{Nat}.

The following auxiliary rule allows reasoning by cases:

\[\frac{A, C \vdash T(u | \phi) \{ x : s \mapsto u_l \} \rightarrow \star \ A \{ x : s \mapsto u_l \} \mid A, C \vdash T \ u | \phi \rightarrow \star \ A}{\text{where } x : s \in \text{vars}(u) \text{ and } \{ u_1, \ldots, u_k \} \text{ is a pattern set for } s.} \]
Case Analysis Rule

Call \(\{u_1, \ldots, u_k\} \subseteq T_\Omega(X)_s \) a pattern set for sort \(s \) iff
\[
T_{\Omega,s} = \bigcup_{1 \leq l \leq k} \{u_l \rho \mid \rho \in [X \to T_\Omega]\}.
\]
Call \(\{u_1, \ldots, u_k\} \subseteq T_\Omega(X)_s \) a pattern set for sort \(s \) iff
\[
T_{\Omega,s} = \bigcup_{1 \leq l \leq k} \{u_l \rho \mid \rho \in [X \to T_\Omega]\}.
\]

Example. \(\{0, s(x)\} \) and \(\{0, s(0), s(s(y))\} \) are pattern sets for \(Nat \).
Call $\{u_1, \ldots, u_k\} \subseteq T_\Omega(X)_s$ a pattern set for sort s iff $T_{\Omega,s} = \bigcup_{1 \leq l \leq k}\{u_l \rho \mid \rho \in [X \to T_\Omega]\}$.

Example. $\{0, s(x)\}$ and $\{0, s(0), s(s(y))\}$ are pattern sets for Nat.

The following auxiliary rule allows reasoning by cases:
Case Analysis Rule

Call \(\{u_1, \ldots, u_k\} \subseteq T_\Omega(X)_s \) a pattern set for sort \(s \) iff
\[
T_{\Omega,s} = \bigcup_{1 \leq l \leq k} \{u_l \rho \mid \rho \in [X \to T_\Omega]\}.
\]

Example. \(\{0, s(x)\} \) and \(\{0, s(0), s(s(y))\} \) are pattern sets for \(Nat \).

The following auxiliary rule allows reasoning by cases:

Case Analysis

\[
\bigwedge_{1 \leq l \leq k} [A, C] \vdash_T (u \mid \varphi)\{x:s \mapsto u_l\} \rightarrow^\ast A\{x:s \mapsto u_l\}
\]

\[
[A, C] \vdash_T u \mid \varphi \rightarrow^\ast A
\]
Case Analysis Rule

Call \(\{u_1, \ldots, u_k\} \subseteq T_{\Omega}(X)_s \) a pattern set for sort \(s \) iff
\[
T_{\Omega,s} = \bigcup_{1 \leq l \leq k} \{u_l \rho \mid \rho \in [X \rightarrow T_{\Omega}]\}.
\]

Example. \(\{0, s(x)\} \) and \(\{0, s(0), s(s(y))\} \) are pattern sets for \(Nat \).

The following auxiliary rule allows reasoning by cases:

Case Analysis

\[
\bigwedge_{1 \leq l \leq k} [A, C] \vdash_T (u \mid \varphi)\{x:s \mapsto u_l\} \longrightarrow^{\star} A\{x:s \mapsto u_l\}
\]

\[
[A, C] \vdash_T u \mid \varphi \longrightarrow^{\star} A
\]

where \(x:s \in vars(u) \) and \(\{u_1, \ldots, u_k\} \) is a pattern set for \(s \).
Suppose we want to prove that a rewrite theory $\mathcal{R} = (\Sigma, B, R)$ satisfies a reachability formula $A \rightarrow^\ast B$, denoted $\mathcal{R} = (\Sigma, B, R) \models A \rightarrow^\ast B$.
Suppose we want to prove that a rewrite theory $\mathcal{R} = (\Sigma, B, R)$ satisfies a reachability formula $A \xrightarrow{\otimes} B$, denoted $\mathcal{R} = (\Sigma, B, R) \models A \xrightarrow{\otimes} B$. How can we do it?
Suppose we want to prove that a rewrite theory $\mathcal{R} = (\Sigma, B, R)$ satisfies a reachability formula $A \rightarrow^\ast B$, denoted $\mathcal{R} = (\Sigma, B, R) \models A \rightarrow^\ast B$. How can we do it?

The inference rules of reachability logic have been implemented in Maude as a new tool:
Suppose we want to prove that a rewrite theory $\mathcal{R} = (\Sigma, B, R)$ satisfies a reachability formula $A \xrightarrow{\ast} B$, denoted $\mathcal{R} = (\Sigma, B, R) \models A \xrightarrow{\ast} B$. How can we do it?

The inference rules of reachability logic have been implemented in Maude as a new tool: the Maude *Reachability Logic Prover*.
Suppose we want to prove that a rewrite theory $\mathcal{R} = (\Sigma, B, R)$ satisfies a reachability formula $A \rightarrow^\ast B$, denoted $\mathcal{R} = (\Sigma, B, R) \models A \rightarrow^\ast B$. How can we do it?

The inference rules of reachability logic have been implemented in Maude as a new tool: the Maude *Reachability Logic Prover*. To use this tool to prove properties of a rewrite theory specified as a system module FOO you:

1. Load FOO into Maude.
2. Give to Maude the command `load rltool`.
3. Form now on, all your commands are given to the tool, and not really to Maude. They should be enclosed in parentheses and ended by a period right before the closing parenthesis (as for Full Maude). The first such command should be:

$(select FOO .)$
Suppose we want to prove that a rewrite theory $\mathcal{R} = (\Sigma, B, R)$ satisfies a reachability formula $A \rightarrow \bowtie B$, denoted $\mathcal{R} = (\Sigma, B, R) \models A \rightarrow \bowtie B$. How can we do it?

The inference rules of reachability logic have been implemented in Maude as a new tool: the Maude *Reachability Logic Prover*. To use this tool to prove properties of a rewrite theory specified as a system module F00 you:

1. load F00 into Maude
Suppose we want to prove that a rewrite theory \(R = (\Sigma, B, R) \) satisfies a reachability formula \(A \longrightarrow^{\ast} B \), denoted \(R = (\Sigma, B, R) \models A \longrightarrow^{\ast} B \). How can we do it?

The inference rules of reachability logic have been implemented in Maude as a new tool: the Maude *Reachability Logic Prover*. To use this tool to prove properties of a rewrite theory specified as a system module FOO you:

1. load FOO into Maude
2. give to Maude the command
Suppose we want to prove that a rewrite theory $\mathcal{R} = (\Sigma, B, R)$ satisfies a reachability formula $A \rightarrow^{\ast} B$, denoted $\mathcal{R} = (\Sigma, B, R) \models A \rightarrow^{\ast} B$. How can we do it?

The inference rules of reachability logic have been implemented in Maude as a new tool: the Maude *Reachability Logic Prover*. To use this tool to prove properties of a rewrite theory specified as a system module FOO you:

1. load FOO into Maude
2. give to Maude the command
   ```clojure
   load rltool
   ```
Suppose we want to prove that a rewrite theory \(\mathcal{R} = (\Sigma, B, R) \) satisfies a reachability formula \(A \rightarrow^\ast B \), denoted \(\mathcal{R} = (\Sigma, B, R) \models A \rightarrow^\ast B \). How can we do it?

The inference rules of reachability logic have been implemented in Maude as a new tool: the Maude \textit{Reachability Logic Prover}. To use this tool to prove properties of a rewrite theory specified as a system module \texttt{FOO} you:

1. load \texttt{FOO} into Maude
2. give to Maude the command
   ```
   load rltool
   ```
3. Form now on, all your commands are given to the tool, and not really to Maude.
Suppose we want to prove that a rewrite theory $\mathcal{R} = (\Sigma, B, R)$ satisfies a reachability formula $A \rightarrow^\ast B$, denoted $\mathcal{R} = (\Sigma, B, R) \models A \rightarrow^\ast B$. How can we do it?

The inference rules of reachability logic have been implemented in Maude as a new tool: the Maude *Reachability Logic Prover*. To use this tool to prove properties of a rewrite theory specified as a system module FOO you:

1. load FOO into Maude
2. give to Maude the command
   ```
   load rltool
   ```
3. Form now on, all your commands are given to the tool, and not really to Maude. They should be enclosed in parentheses and ended by a period right before the closing parenthesis (as for Full Maude).
Suppose we want to prove that a rewrite theory \(\mathcal{R} = (\Sigma, B, R) \) satisfies a reachability formula \(A \longrightarrow^\ast B \), denoted \(\mathcal{R} = (\Sigma, B, R) \models A \longrightarrow^\ast B \). How can we do it?

The inference rules of reachability logic have been implemented in Maude as a new tool: the Maude *Reachability Logic Prover*. To use this tool to prove properties of a rewrite theory specified as a system module `FOO` you:

1. load `FOO` into Maude
2. give to Maude the command
   ```
   load rltool
   ```
3. Form now on, all your commands are given to the tool, and not really to Maude. They should be enclosed in parentheses and ended by a period right before the closing parenthesis (as for Full Maude). The first such command should be:
Suppose we want to prove that a rewrite theory $\mathcal{R} = (\Sigma, B, R)$ satisfies a reachability formula $A \longrightarrow^* B$, denoted $\mathcal{R} = (\Sigma, B, R) \models A \longrightarrow^* B$. How can we do it?

The inference rules of reachability logic have been implemented in Maude as a new tool: the Maude *Reachability Logic Prover*. To use this tool to prove properties of a rewrite theory specified as a system module F00 you:

1. load F00 into Maude
2. give to Maude the command
   ```
   load rltool
   ```
3. Form now on, all your commands are given to the tool, and not really to Maude. They should be enclosed in parentheses and ended by a period right before the closing parenthesis (as for Full Maude). The first such command should be:
   ```
   (select F00 .)
   ```
After this you will be ready to give commands to the tool to:

1. enter goals, and
2. prove such goals.

As for other Maude tools, there is a grammar for all such commands. A first fragment is:

- **VariableName** ::= \texttt{<Special>}
- **ModuleName** ::= \texttt{<Special>}
- **Term** ::= \texttt{<Special>}
- **Atom** ::= (\texttt{Term})=(\texttt{Term}) | (\texttt{Term})=/=(\texttt{Term})
- **Conjunction** ::= true | Atom | Conjunction \& Conjunction
- **Pattern** ::= (\texttt{Term}) | Conjunction
- **PatternFormula** ::= Pattern | PatternFormula \lor PatternFormula
- **RFormula** ::= Pattern \Rightarrow A PatternFormula
After this you will be ready to give commands to the tool to: (i) enter goals, and (ii) prove such goals.
After this you will be ready to give commands to the tool to: (i) enter goals, and (ii) prove such goals. As for other Maude tools, there is a grammar for all such commands.
Reachability Logic Tool Commands

After this you will be ready to give commands to the tool to: (i) enter goals, and (ii) prove such goals. As for other Maude tools, there is a grammar for all such commands. A first fragment is:
After this you will be ready to give commands to the tool to: (i) enter goals, and (ii) prove such goals. As for other Maude tools, there is a grammar for all such commands. A first fragment is:

\[
\begin{align*}
\text{VariableName} & ::= \text{<Special>} \\
\text{ModuleName} & ::= \text{<Special>} \\
\text{Term} & ::= \text{<Special>} \\
\text{Atom} & ::= (\text{Term})=(\text{Term}) \\
& \quad | (\text{Term})=/=(\text{Term}) \\
\text{Conjunction} & ::= \text{true} \\
& \quad | \text{Atom} \\
& \quad | \text{Conjunction} \land \text{Conjunction} \\
\text{Pattern} & ::= (\text{Term}) | \text{Conjunction} \\
\text{PatternFormula} & ::= \text{Pattern} \\
& \quad | \text{PatternFormula} \lor \text{PatternFormula} \\
\text{RFormula} & ::= \text{Pattern} \Rightarrow A \text{ PatternFormula}
\end{align*}
\]
For example, for CHOICE, the reachability formula
For example, for CHOICE, the reachability formula

\[
\{M\} \mid \top \xrightarrow{\ast} \{M'\} \mid M' \subseteq M = tt
\]
For example, for CHOICE, the reachability formula

\[\{M\} | \top \xrightarrow{\ast} \{M'\} \mid M' \subseteq M = tt \]

is expressed in this grammar as:

\[
(\{M:\text{MSet}\}) \mid \text{true} \Rightarrow A
\]

\[
(\{M':\text{MSet}\}) \mid (M':\text{MSet} =C M:\text{MSet}) = (tt)
\]
For example, for \texttt{CHOICE}, the reachability formula

\[
\{M\} \models \top \xrightarrow{*} \{M'\} \models M' \subseteq M = \text{tt}
\]

is expressed in this grammar as:

\[
(\{M:\text{MSet}\}) \models \text{true} \Rightarrow A
\]

\[
(\{M':\text{MSet}\}) \models (M' : \text{MSet} = \subseteq C M : \text{MSet}) = (\text{tt})
\]

We can now give commands according to the following grammar:
Reachability Logic Tool Commands (III)

Nat ::= <Special>
GoalName ::= Nat | Nat GoalName
TermSet ::= {Term} | TermSet U TermSet
Command ::= (select ModuleName .)
 | (subsumed Pattern =< Pattern .)
 | (add-goal RFormula .)
 | (def-term-set PatternFormula .)
 | (start-proof .)
 | (step .)
 | (step Nat .)
 | (step* .)
 | (case GoalName on VariableName by TermSet .)
 | (quit .)
Reachability Logic Tool Commands (III)

Nat ::= <Special>
GoalName ::= Nat | Nat GoalName
TermSet ::= {Term} | TermSet U TermSet
Command ::= (select ModuleName .)
 | (subsumed Pattern <= Pattern .)
 | (add-goal RFormula .)
 | (def-term-set PatternFormula .)
 | (start-proof .)
 | (step .)
 | (step Nat .)
 | (step* .)
 | (case GoalName on VariableName by TermSet .)
 | (quit .)

Let us illustrate each of these commands.
Reachability Logic Tool Commands (III)

Nat ::= <Special>
GoalName ::= Nat | Nat GoalName
TermSet ::= {Term} | TermSet U TermSet
Command ::= (select ModuleName .)
 | (subsumed Pattern => Pattern .)
 | (add-goal RFormula .)
 | (def-term-set PatternFormula .)
 | (start-proof .)
 | (step .)
 | (step Nat .)
 | (step* .)
 | (case GoalName on VariableName by TermSet .)
 | (quit .)

Let us illustrate each of these commands.
Since many of the properties we will prove are *invariants* using:
Since many of the properties we will prove are \textit{invariants} using:

\textbf{Corollary}

\textit{If }$[S_0] \subseteq [B] \text{ and } B \xrightarrow{\circ} [B]$ \textit{holds in }$\mathcal{R}_{\text{stop}}$, \textit{then }$B$ \textit{is an invariant for }\mathcal{R} \textit{from initial states }S_0.\textit{.}
Since many of the properties we will prove are \textit{invariants} using:

\textbf{Corollary}

\textit{If } $[S_0] \subseteq [B]$ \textit{and } $B \xrightarrow{\bowtie} [B]$ \textit{holds in } \mathcal{R}_{\text{stop}}, \textit{then } B \textit{ is an invariant for } \mathcal{R} \textit{ from initial states } S_0.$

to discharge the proof obligation $[S_0] \subseteq [B]$
Since many of the properties we will prove are *invariants* using:

Corollary

If \([S_0] \subseteq [B]\) and \(B \xrightarrow{\circledast} [B]\) holds in \(R_{stop}\), then \(B\) is an invariant for \(R\) from initial states \(S_0\).

to discharge the proof obligation \([S_0] \subseteq [B]\) we use the command (subsumed Pattern =< Pattern .)
Since many of the properties we will prove are *invariants* using:

Corollary

If \([S_0] \subseteq [B]\) and \(B \rightarrow^\ast [B]\) holds in \(\mathcal{R}_{stop}\), then \(B\) is an invariant for \(\mathcal{R}\) from initial states \(S_0\).

to discharge the proof obligation \([S_0] \subseteq [B]\) we use the command (subsumed Pattern =< Pattern .)

For example, in READERS–WRITERS–stop, proving the invariant

\[Mutex = \langle R, W \rangle \mid W = 0 \lor (W = 1 \land R = 0) \]
Since many of the properties we will prove are invariants using:

Corollary

If $[S_0] \subseteq [B]$ and $B \xrightarrow{\circ} [B]$ holds in R_{stop}, then B is an invariant for R from initial states S_0.

to discharge the proof obligation $[S_0] \subseteq [B]$ we use the command (subsumed Pattern =< Pattern .)

For example, in READERS-WRITERS-stop, proving the invariant $Mutex = \langle R, W \rangle \mid W = 0 \lor (W = 1 \land R = 0)$ requires that we first check $[[\langle 0, 0 \rangle \mid \top]] \subseteq [[Mutex_1]]$ by giving the command:
Since many of the properties we will prove are *invariants* using:

Corollary

If \([S_0] \subseteq [B]\) and \(B \rightarrow^\star [B]\) holds in \(\mathcal{R}_{\text{stop}}\), then \(B\) is an invariant for \(\mathcal{R}\) from initial states \(S_0\).

to discharge the proof obligation \([S_0] \subseteq [B]\) we use the command (subsumed Pattern =< Pattern .)

For example, in READERS–WRITERS–stop, proving the invariant \(Mutex = \langle R, W \rangle \mid W = 0 \lor (W = 1 \land R = 0)\) requires that we first check \([\langle 0, 0 \rangle \mid \top] \subseteq [Mutex_1]\) by giving the command:

(subsumed (< 0,0 >) | true =< (< R:Nat,W:Nat >) | (W:Nat) = (0) .)
Since many of the properties we will prove are *invariants* using:

Corollary

If $[S_0] \subseteq [B]$ and $B \xrightarrow{\ast} [B]$ holds in $\mathcal{R}_{\text{stop}}$, then B is an invariant for \mathcal{R} from initial states S_0.

to discharge the proof obligation $[S_0] \subseteq [B]$ we use the command (subsumed Pattern =< Pattern .)

For example, in READERS–WRITERS–stop, proving the invariant $Mutex = \langle R, W \rangle | W = 0 \lor (W = 1 \land R = 0)$ requires that we first check $[[\langle 0, 0 \rangle | \top]] \subseteq [[Mutex_1]]$ by giving the command:

(subsumed (< 0,0 >) | true =< (< R: Nat, W: Nat >) | (W: Nat) = (0) .)

because in the current tool syntax the condition in a pattern must be a *conjunction* so that $Mutex$ is decomposed as:
Since many of the properties we will prove are *invariants* using:

Corollary

If $[S_0] \subseteq [B]$ and $B \xrightarrow{\circledast} [B]$ holds in R_{stop}, then B is an invariant for R from initial states S_0.

To discharge the proof obligation $[S_0] \subseteq [B]$ we use the command (subsumed Pattern \leftarrow Pattern).

For example, in READERS–WRITERS–stop, proving the invariant $Mutex = \langle R, W \rangle \mid W = 0 \lor (W = 1 \land R = 0)$ requires that we first check $[\langle 0, 0 \rangle \mid \top] \subseteq [Mutex_1]$ by giving the command:

(subsumed $\langle 0, 0 \rangle \mid \text{true} \leftarrow (\langle R:\text{Nat}, W:\text{Nat} \rangle) \mid (W:\text{Nat}) = (0)$.)

Because in the current tool syntax the condition in a pattern must be a *conjunction* so that $Mutex$ is decomposed as: $Mutex_1 = \langle R, W \rangle \mid W = 0$ and
Since many of the properties we will prove are *invariants* using:

Corollary

If $[S_0] \subseteq [B]$ and $B \xrightarrow{\circ} [B]$ holds in R_{stop}, then B is an invariant for R from initial states S_0.

to discharge the proof obligation $[S_0] \subseteq [B]$ we use the command

(subsumed Pattern =< Pattern .)

For example, in READERS-WRITERS-stop, proving the invariant $Mutex = \langle R, W \rangle | W = 0 \lor (W = 1 \land R = 0)$ requires that we first check $[[\langle 0, 0 \rangle | \top]] \subseteq [[Mutex_1]]$ by giving the command:

(subsumed (< 0,0 >) | true =< (< R:Nat,W:Nat >) | (W:Nat) = (0) .)

because in the current tool syntax the condition in a pattern must be a *conjunction* so that $Mutex$ is decomposed as:

$Mutex_1 = \langle R, W \rangle | W = 0$ and

$Mutex_2 = \langle R, W \rangle | W = 1 \land R = 0$.
The set \([T]\) of *terminating states* should also be specified as a pattern formula \(T\).
The set $[T]$ of *terminating states* should also be specified as a *pattern formula* T. We only require $[T]$ to be *contained* in, or equal to, the set of *all* terminating states.
The set \([T]\) of terminating states should also be specified as a pattern formula \(T\). We only require \([T]\) to be contained in, or equal to, the set of all terminating states. This allows more detailed reasoning about \(T\)-terminating sequences to localize the reasoning to \(T\) by the inference relation \(\vdash_T\) (see inference rules).
The set $[T]$ of \textit{terminating states} should also be specified as a \textit{pattern formula} T. We only require $[T]$ to be \textit{contained} in, or equal to, the set of \textit{all} terminating states. This allows more detailed reasoning about T-terminating sequences to localize the reasoning to T by the inference relation \vdash_T (see inference rules).

In this way we can prove invariants for \textit{any} rewrite theory \mathcal{R}, terminating, non-terminating, or never-terminating, by defining:
The set $\llbracket T \rrbracket$ of terminating states should also be specified as a pattern formula T. We only require $\llbracket T \rrbracket$ to be contained in, or equal to, the set of all terminating states. This allows more detailed reasoning about T-terminating sequences to localize the reasoning to T by the inference relation \vdash_T (see inference rules).

In this way we can prove invariants for any rewrite theory \mathcal{R}, terminating, non-terminating, or never-terminating, by defining: $T = [x_1, \ldots, x_n] | \top$ as terminating states in \mathcal{R}_{stop}.
The set $[T]$ of \textit{terminating states} should also be specified as a \textit{pattern formula} T. We only require $[T]$ to be \textit{contained} in, or equal to, the set of \textit{all} terminating states. This allows more detailed reasoning about T-terminating sequences to localize the reasoning to T by the inference relation \vdash_T (see inference rules).

In this way we can prove invariants for \textit{any} rewrite theory \mathcal{R}, terminating, non-terminating, or never-terminating, by defining: $T = [x_1, \ldots, x_n] \mid \top$ as terminating states in $\mathcal{R}_{\text{stop}}$.

For example for \textsc{READERS-WRITERS-stop}, we specify T by giving the command:
The set $[T]$ of terminating states should also be specified as a pattern formula T. We only require $[T]$ to be contained in, or equal to, the set of all terminating states. This allows more detailed reasoning about T-terminating sequences to localize the reasoning to T by the inference relation \vdash_T (see inference rules).

In this way we can prove invariants for any rewrite theory \mathcal{R}, terminating, non-terminating, or never-terminating, by defining: $T = [x_1, \ldots, x_n] \mid \top$ as terminating states in \mathcal{R}_{stop}.

For example for READERS–WRITERS–stop, we specify T by giving the command:

$(\text{def-term-set} ([R:Nat,W:Nat]) \mid \text{true} .)$
Recall that in general we need to prove a set C of reachability formulas,

\(\rightarrow \ast \rightarrow \)
Recall that in general we need to prove a set C of reachability formulas, including the *main formula* $A \rightarrow^{\circ} B$ and perhaps some *auxiliary lemmas*.
Recall that in general we need to prove a set C of reachability formulas, including the **main formula** $A \xrightarrow{\mathcal{R}} B$ and perhaps some **auxiliary lemmas**. To enter to the tool each formula in C we give the command:
Recall that in general we need to prove a set C of reachability formulas, including the *main formula* $A \rightarrow^\ast B$ and perhaps some *auxiliary lemmas*. To enter to the tool each formula in C we give the command: (add-goal RFormula .)

For example, in *CHOICE*, to enter the formula

\[
\{ M \}:|v\rightarrow^\ast \{ M' \} | M' \subseteq M = tt
\]

we give the command:

(\texttt{(add-goal (\{ M:MSet \}) | true ⇒ A (\{ M':MSet \}) | (M':MSet =C M:MSet) = (tt) .)})
Recall that in general we need to prove a set C of reachability formulas, including the main formula $A \rightarrow^{\circ} B$ and perhaps some auxiliary lemmas. To enter to the tool each formula in C we give the command: (add-goal RFormula .)

For example, in CHOICE, to enter the formula
Reachability Logic Tool Commands (VI)

Recall that in general we need to prove a set C of reachability formulas, including the *main formula* $A \rightarrow{}^\star B$ and perhaps some *auxiliary lemmas*. To enter to the tool each formula in C we give the command: (add-goal RFormula .)

For example, in CHOICE, to enter the formula

$$\{M\} | \top \rightarrow{}^\star \{M'\} | M' \subseteq M = tt$$
Recall that in general we need to prove a set C of reachability formulas, including the main formula $A \rightarrow^{\circlearrowright} B$ and perhaps some auxiliary lemmas. To enter to the tool each formula in C we give the command: \(\text{(add-goal RFormula .)}\)

For example, in CHOICE, to enter the formula

$$\{{M}\} \mid \top \rightarrow^{\circlearrowright} \{{M}'\} \mid M' \subseteq M = tt$$

we give the command:
Recall that in general we need to prove a set C of reachability formulas, including the main formula $A \rightarrow^\circ B$ and perhaps some auxiliary lemmas. To enter to the tool each formula in C we give the command: (add-goal RFormula.)

For example, in CHOICE, to enter the formula

$$\{M\} | \top \rightarrow^\circ \{M'\} | M' \subseteq M = \text{tt}$$

we give the command:

(add-goal (\{M:MSet\}) | true =>A
 (\{M’:MSet\}) | (M’:MSet =C M:MSet) = (tt) .)
Recall that in general we need to prove a set C of reachability formulas, including the *main formula* $A \rightarrow^\ast B$ and perhaps some *auxiliary lemmas*. To enter to the tool each formula in C we give the command: $(\text{add-goal } \text{RFormula} .)$

For example, in CHOICE, to enter the formula

$$\{M\} | \top \rightarrow^\ast \{M'\} | M' \subseteq M = tt$$

we give the command:

$$(\text{add-goal } (\{M:\text{MSet}\}) | \text{true} \Rightarrow A \\
\quad (\{M':\text{MSet}\}) | (M':\text{MSet} \subseteq C M:\text{MSet}) = (tt) .)$$

The tool gives each entered goal a number.
Recall that in general we need to prove a set C of reachability formulas, including the \textit{main formula} $A \rightarrow^\otimes B$ and perhaps some \textit{auxiliary lemmas}. To enter to the tool each formula in C we give the command: (add-goal RFormula .)

For example, in CHOICE, to enter the formula

$$\{M\} \mid \top \rightarrow^\otimes \{M'\} \mid M' \subseteq M = \text{tt}$$

we give the command:

$$(\text{add-goal } (\{M:\text{MSet}\}) \mid \text{true } \rightarrow^A (\{M':\text{MSet}\}) \mid (M':\text{MSet} =_C M:\text{MSet}) = (\text{tt}) \text{ .})$$

The tool gives each entered goal a number. It will later generate \textit{subgoals} named by \textit{number sequences} $n_1 \ldots n_k$.
Recall that in general we need to prove a set C of reachability formulas, including the *main formula* $A \xrightarrow{\circledast} B$ and perhaps some *auxiliary lemmas*. To enter to the tool each formula in C we give the command:

```
(add-goal RFormula .)
```

For example, in CHOICE, to enter the formula

$$\{M\} | \top \xrightarrow{\circledast} \{M'\} | M' \subseteq M = tt$$

we give the command:

```
(add-goal ([M:MSet]) | true =>A
   ([M':MSet]) | (M':MSet =C M:MSet) = (tt) .)
```

The tool gives each entered goal a number. It will later generate *subgoals* named by *number sequences* $n_1 \ldots n_k$, naming goal $n_1 \bullet \ldots \bullet n_k$, such as
Recall that in general we need to prove a set C of reachability formulas, including the main formula $A \longrightarrow^\ast B$ and perhaps some auxiliary lemmas. To enter to the tool each formula in C we give the command: (add-goal RFormula .)

For example, in CHOICE, to enter the formula

$$\{M\} \mid \top \longrightarrow^\ast \{M'\} \mid M' \subseteq M = \text{tt}$$

we give the command:

$$(\text{add-goal } (\{M:MSet\}) \mid \text{true} \Rightarrow A \hspace{1cm} (\{M':MSet\}) \mid (M':MSet =C M:MSet) = (\text{tt}) .)$$

The tool gives each entered goal a number. It will later generate subgoals named by number sequences $n_1 \ldots n_k$, naming goal $n_1 \cdots n_k$, such as 2 3 1 as the first child of child 3 of goal 2.
After:

(i) checking containments of the form $J \subseteq J$ with the \texttt{(subsumed Pattern =< Pattern .)} command and (ii) adding all goals in C to the tool with the \texttt{(add-goal RFormula .)} command, we can start the proof process by giving the \texttt{(start-proof .)} command.

If we want to see which goals are obtained by one (resp. n) step(s) of applying some rule of inference to each of current goals we give the command:\texttt{(step .)} (resp. \texttt{(step n .)}).

Instead, if we want to go to the end of the proof process in the hope that it will terminate we give the \texttt{(step* .)} command. And at any time we can quit giving the \texttt{(quit .)} command.
After: (i) checking containments of the form $[S_0] \subseteq [B]$ with the (subsumed Pattern \preceq Pattern .) command
After: (i) checking containments of the form $[S_0] \subseteq [B]$ with the (subsumed Pattern \Rightarrow Pattern .) command and (ii) adding all goals in C to the tool with the (add-goal RFormula .) command,
After: (i) checking containments of the form $[S_0] \subseteq [B]$ with the (subsumed Pattern \subseteq Pattern .) command and (ii) adding all goals in C to the tool with the (add-goal RFormula .) command, we can start the proof process by giving the (start-proof .) command.
After: (i) checking containments of the form $[\mathcal{S}_0] \subseteq [\mathcal{B}]$ with the \texttt{(subsumed Pattern = Pattern .)} command and (ii) adding all goals in \mathcal{C} to the tool with the \texttt{(add-goal RFormula .)} command, we can start the proof process by giving the \texttt{(start-proof .)} command.

If we want to see which goals are obtained by one (resp. n) step(s) of applying some rule of inference to each of current goals we give the command:
After: (i) checking containments of the form $[S_0] \subseteq [B]$ with the (subsumed Pattern $<=$ Pattern .) command and (ii) adding all goals in C to the tool with the (add-goal RFormula .) command, we can start the proof process by giving the (start-proof .) command.

If we want to see which goals are obtained by one (resp. n) step(s) of applying some rule of inference to each of current goals we give the command: (step .) (resp. (step n .)).
After: (i) checking containments of the form $[S_0] \subseteq [B]$ with the (subsumed Pattern \leftarrow Pattern .) command and (ii) adding all goals in C to the tool with the (add-goal RFormula .) command, we can start the proof process by giving the (start-proof .) command.

If we want to see which goals are obtained by one (resp. n) step(s) of applying some rule of inference to each of current goals we give the command: (step .) (resp. (step n .)).

Instead, if we want to go to the end of the proof process in the hope that it will terminate we give the (step* .) command.
After: (i) checking containments of the form $[S_0] \subseteq [B]$ with the
(subsumed Pattern $<=$ Pattern .) command and (ii) adding
all goals in C to the tool with the (add-goal RFormula .)
command, we can start the proof process by giving the
(start-proof .) command.

If we want to see which goals are obtained by one (resp. n) step(s)
of applying some rule of inference to each of current goals we give
the command: (step .) (resp. (step n .)).

Instead, if we want to go to the end of the proof process in the
hope that it will terminate we give the (step* .) command. And
at any time we can quit giving the (quit .) command.
At any time in the proof process we can apply the **Case Analysis** rule to a goal named with a number list \(l \) to decompose it into several subgoals by giving the command:

```
(case GoalName on VariableName by TermSet .)
```
At any time in the proof process we can apply the **Case Analysis** rule to a goal named with a number list \(l \) to decompose it into several subgoals by giving the command:

\[
\text{(case GoalName on VariableName by TermSet .)}
\]
At any time in the proof process we can apply the **Case Analysis** rule to a goal named with a number list \(l \) to decompose it into several subgoals by giving the command:

\[
\text{(case GoalName on VariableName by TermSet .)}
\]

For example, if we want to do case analysis on the goal

\[
\{ M : \text{MSet} \} \mid \text{true} \Rightarrow \{ M' : \text{MSet} \} \mid (M' : \text{MSet} =_C M : \text{MSet}) = (\text{tt})
\]

which was named, say, as goal 1 by the tool, using the pattern set \(
\{ \text{N} : \text{Nat}, M_1 : \text{MSet}, M_2 : \text{MSet} \}
\), we will give the command:

\[
\text{(case 1 on M : \text{MSet} by } \{ \text{N} : \text{Nat} \} \cup \{ M_1 : \text{MSet}, M_2 : \text{MSet} \} .)
\]
At any time in the proof process we can apply the **Case Analysis** rule to a goal named with a number list \(l \) to decompose it into several subgoals by giving the command:

\[
\text{(case GoalName on VariableName by TermSet .)}
\]

For example, if we want to do case analysis on the goal

\[
(\{M: \text{MSet}\}) \mid \text{true} \implies A (\{M’: \text{MSet}\}) \mid (M’: \text{MSet} \iff M: \text{MSet}) = (\text{tt})
\]
At any time in the proof process we can apply the **Case Analysis** rule to a goal named with a number list \(l \) to decompose it into several subgoals by giving the command:

\[
\text{(case GoalName on VariableName by TermSet .)}
\]

For example, if we want to do case analysis on the goal

\[
(\{M:\text{MSet}\} \mid \text{true} \Rightarrow A (\{M^' : \text{MSet}\}) \mid (M^' : \text{MSet} =_{C} M : \text{MSet}) = (\text{tt})
\]

which was named, say, as goal 1 by the tool, using the pattern set \(\{N : \text{Nat}, M_1 : \text{MSet} M_2 : \text{MSet}\} \), we will give the command:
At any time in the proof process we can apply the **Case Analysis** rule to a goal named with a number list \(l \) to decompose it into several subgoals by giving the command:

\[
\text{(case GoalName on VariableName by TermSet .)}
\]

For example, if we want to do case analysis on the goal

\[
\{M:MSet\} \mid \text{true} \Rightarrow A \{M’:MSet\} \mid (M’:MSet =C M:MSet) = (tt)
\]

which was named, say, as goal 1 by the tool, using the pattern set \(\{N: Nat, M_1: MSet, M_2: MSet\} \), we will give the command:

\[
\text{(case 1 on M:MSet by \{N:Nat\} U \{M1:MSet M2:MSet\} .)}
\]
We first recall the CHOICE module from Lecture 23

```plaintext
mod CHOICE is
  protecting NAT .
  sorts MSet State Pred .
  subsorts Nat < MSet .
  op __ : MSet MSet -> MSet [ctor assoc comm] .
  op {_} : MSet -> State .
  op tt : -> Pred [ctor] .
  op _=C_ : MSet MSet -> Pred [ctor] .
vary U V : MSet . var N : Nat .
eq U =C U = tt .
eq U =C U V = tt .
rl [choice] : {U V} => {U} .
endm
```
Also recall the Hoare Triple from Lecture 23:

\[
\{\{M\} \mid \top\} \text{ CHOICE } \{\{N\} \mid N \subseteq M = tt\}
\]

In the tool notation, we can write this as the reachability formula:

\[
(\{M: \text{MSet}\}) \mid \text{true} \Rightarrow A
\]

\[
(\{N: \text{Nat}\}) \mid (N: \text{Nat} =C M: \text{MSet}) = (tt)
\]

Sometimes, we cannot prove a goal as-is and must analyze cases; this formula is one such example.
Example Proofs (III)

\[
\{ M : MSet \} | \text{true} \Rightarrow A \\
\{ N : \text{Nat} \} | (N \text{Nat} = \text{C M : MSet}) = (tt)
\]

The case analysis occurs on variable \(M : MSet \);
Two cases: \(M : MSet \mapsto N : \text{Nat} \) (or) \(M : MSet \mapsto M_1 : MSet \) \(M_2 : MSet \)

Recall any terminating state in this theory has the form \(\{ N : \text{Nat} \} \)

Now we are ready to prove this example in the tool
The full proof script is given below:

load choice.maude
load rltool.maude
(select module CHOICE .)
(def-term-set ({N:Nat}) | true .)
(add-goal ({M:MSet}) | true =>A
 ({N:Nat}) | (N:Nat =C M:MSet) = (tt) .)
(start-proof .)
(case 1 on M:MSet by {K:Nat} U {M1:MSet M2:MSet} .)
(step* .)

Note: 3 proof rules sufficient to prove triple for all multisets
Q: Does the system handle general reachability formulas as nicely?

A: Let us illustrate by example...

Recall the CHOICE reachability formula from Lecture 23:

\[\{M\} \mid \top \longrightarrow^{\otimes} \{M'\} \mid M' \subseteq M = tt \]

Expressible in the tool notation as:

\[
(\{M:\text{MSet}\} \mid \text{true} = A
\]

\[
(\{M':\text{Nat}\} \mid (M' : \text{Nat} =C M : \text{MSet}) = (tt)
\]

We expect the proof will be similar to its Hoare Triple cousin...
The proof script confirms our suspicions:

load choice.maude
load rltool.maude
(select module CHOICE .)
(def-term-set ({N:Nat}) | true .)
(add-goal ({M:MSet}) | true =>A
 ({M':MSet}) | (M':MSet =C M:MSet) = (tt) .)
(start-proof .)
(case 1 on M:MSet by {K:Nat} U {M1:MSet M2:MSet} .)
(step* .)

Except for N:Nat \mapsto M’:MSet, the two proofs are identical.
We already saw READERS-WRITERS-stop in Lecture 23

mod READERS-WRITERS-stop is
 protecting NAT .
 sort State .
 vars R W : Nat .
 rl < 0, 0 > => < 0, s(0) > .
 rl < R, s(W) > => < R, W > .
 rl < R, 0 > => < s(R), 0 > .
 rl < s(R), W > => < R, W > .
endm

Recall the *mutual exclusion* proof we were working on earlier...
In READERS–WRITERS, by our corollary, to prove the invariant

\[Mutex = \langle R, W \rangle \mid W = 0 \lor (W = 1 \land R = 0) \]

holds from state \(\langle 0, 0 \rangle \), we must check:

1. \(\llbracket \langle 0, 0 \rangle \mid \top \rrbracket \subseteq \llbracket Mutex_1 \rrbracket \)
2. \(Mutex_1 \xrightarrow{\ast} [Mutex] \)
3. \(Mutex_2 \xrightarrow{\ast} [Mutex] \)

where:

\(Mutex_1 = \langle R, W \rangle \mid W = 0 \) and
\(Mutex_2 = \langle R, W \rangle \mid W = 1 \land R = 0. \)

Now we can write our proof script
Example Proofs (IX)

load r&w.maude
load rltool.maude
(select module READERS-WRITERS-stop .)
(subsumed (< 0,0 >) | true =<
 (< R:Nat,W:Nat >) | (W:Nat) = (0) .)
(def-term-set ([R:Nat,W:Nat]) | true .)
(add-goal (< R:Nat,W:Nat >) | (W) = (0)
 => A ([R:Nat,W:Nat]) | (W) = (0) \/
 ([R:Nat,W:Nat]) | (W) = (1) \/ (R) = (0) .)
(add-goal (< R:Nat,W:Nat >) | (W) = (1) \/ (R) = (0)
 => A ([R:Nat,W:Nat]) | (W) = (0) \/
 ([R:Nat,W:Nat]) | (W) = (1) \/ (R) = (0) .)
(start-proof .)
(step* .)