Program Verification: Lecture 19

José Meseguer

Computer Science Department
University of Illinois at Urbana-Champaign
We will begin considering the topic of verification of concurrent programs. As for sequential programs, we will consider first the case of declarative concurrent programs. Later in the course we will also consider imperative concurrent programs.

So the first question is, what is a suitable computational logic to write concurrent programs in a declarative style? This is of course an open-ended question, in that a variety of answers are possible at present, and new answers may be proposed in the future.
In this course, we will use rewriting logic as a specific computational logic that is indeed suitable for concurrent programming.

This is in full harmony with our use of equational logic for what, rather than sequential, we could better call deterministic declarative programming. In fact, rewriting logic generalizes equational logic in a natural way.
We give a first, already quite general, definition of rewrite theories. We will further generalize this notion later.

A rewrite theory \mathcal{R} is a triple $\mathcal{R} = (\Sigma, E, R)$, with:

- (Σ, E) a membership equational theory, and

- R a set of labeled rewrite rules of the form $l : t \rightarrow t' \leftarrow \text{cond}$, with l a label, $t, t' \in T_{\Sigma(X)_k}$ for some kind k, and cond a condition (involving the same variables X) as explained below.
The most general form of a conditional rewrite rule is:

\[l : t \rightarrow t' \iff (\bigwedge_i u_i = u'_i) \land (\bigwedge_j v_j : s_j) \land (\bigwedge_k w_k \rightarrow w'_k), \]

that is, in general, the condition is a conjunction of equations, memberships, and rewrites, where the variables in all the \(\Sigma \)-terms \(t, t', u_i, u'_i, v_j, w_k, w'_k \) are contained in a common set \(X \). There is no requirement that \(\text{vars}(t) = X \), and no assumptions of confluence or termination. The rule is called unconditional if the condition is empty.
In Maude, rewrite theories are specified in system modules.

The same way that a functional module has essentially the form, $\text{fmod } (\Sigma, E) \text{ endfm}$, with (Σ, E) a membership equational logic theory, a system module has essentially the form, $\text{mod } (\Sigma, E, R) \text{ endm}$, with (Σ, E, R) a rewrite theory.

We will illustrate the syntax details in examples. In particular, a conditional rewrite rule of the form, $l : t \rightarrow t' \leftarrow \text{cond}$ is specified in Maude with syntax,

$$\text{crl } [l] : t \Rightarrow t' \text{ if cond}.$$
To motivate rewriting logic as a formalism to specify and program concurrent systems, we will show how it can be used to naturally specify three important classes of systems, namely:

- automata, also called labeled transition systems,
- Petri nets, one of the simplest concurrency models, and
- object-oriented concurrent systems.
Concurrency vs. Nondeterminism: Automata

We can motivate concurrency by its absence. The point is that we can have systems that are nondeterministic, but are not concurrent. Consider the following faulty automaton to buy candy:
Although in the above automaton each labeled transition from each state leads to a single next state, the automaton is nondeterministic in the sense that the automaton's computations are not confluent, and therefore completely different outcomes are possible.

For example, from the ready state the transitions fault and 1 lead to completely different states that can never be reconciled in a common subsequent state.
So, the automaton is in this sense nondeterministic, yet it is **strictly sequential**, in the sense that, although at each state the automaton may be able to take several transitions, it can only take one transition at a time.

Since the intuitive notion of concurrency is that several transitions can happen simultaneously, we can conclude by saying the our automaton, although it exhibits a form of nondeterminism, has no concurrency whatsoever.
We can specify such an automaton as a system module,

mod CANDY-AUTOMATON is
 sort State .
 ops $ ready broken nestle m&m q : -> State .
 rl [chng] : nestle => q .
 rl [chng] : m&m => q .
endm
Rewrite Rules as Transitions

Note that rewrite rules do not have an equational interpretation. They are not understood as equations, but as transitions, that in general cannot be reversed.

This is why, in a rewrite theory (Σ, E, R) the equations in E are totally different from the rules R, since equations and rules have a totally different semantics.

However, operationally Maude will assume that the equations in E are confluent, terminating, and sort decreasing modulo some $A \subseteq E$, and will compute with such equations and also with the rules in R by rewriting, yet distinguishing equation simplification (the reduce command) from rewriting with rules (the rewrite command).
Maude can execute rewrite theories with the `rewrite` command (can be abbreviated to `rew`). For example,

Maude> rew $.
rewrite in CANDY-AUTOMATON : $.
rewrites: 5 in 0ms cpu (0ms real) (~ rewrites/second)
result State: q

The `rewrite` command applies the rules in a *fair* way (all rules are given a chance) until termination, and gives one result.
The rewrite Command (II)

In this example, fairness saves us from nontermination, but in general we can easily have nonterminating computations.

For this reason the rewrite command can be given a numeric argument stating the maximum number of rewrite steps. For example,
Maude> set trace on.
*********** rule
rl [in]: $ => ready.
empty substitution
$ ---r e a d y
*********** rule
rl [cancel]: ready => $.
empty substitution
ready ---> $.
*********** rule
rl [in]: $ => ready.
empty substitution
$ ---> ready
rewrites: 3 in 0ms cpu (0ms real) (~ rewrites/second)
result State: ready
Of course, since we are in a nondeterministic situation, the rewrite command gives us one possible behavior among many.

To systematically explore all behaviors from an initial state we can use the search command, which takes two terms: a ground term which is our initial state, and a term, possibly with variables, which describes our desired target state.

Maude then does a breadth first search to try to reach the desired target state. For example, to find the terminating states from the $ state we can give the command (where the “!” in =>! specifies that the target state must be a terminating state),
Maude> search $ =>! X:State .
search in CANDY-AUTOMATON : $ =>! X:State .

Solution 1 (state 4)
states: 6 in 0ms cpu (0ms real)
X:State --> broken

Solution 2 (state 5)
states: 6 in 0ms cpu (0ms real)
X:State --> q

We can then inspect the search graph by giving the command,
Maude> show search graph .

state 0, State: $
arc 0 ===> state 1 (rl [in]: $ => ready .)

state 1, State: ready
arc 0 ===> state 0 (rl [cancel]: ready => $.)
arc 1 ===> state 2 (rl [1]: ready => nestle .)
arc 2 ===> state 3 (rl [2]: ready => m&m .)
arc 3 ===> state 4 (rl [fault]: ready => broken .)

state 2, State: nestle
arc 0 ===> state 5 (rl [chng]: nestle => q .)

state 3, State: m&m
arc 0 ===> state 5 (rl [chng]: m&m => q .)

state 4, State: broken
state 5, State: q
The search Command (IV)

We can then ask for the shortest path to any state in the state graph (for example, state 5) by giving the command,

Maude> show path 5 .

state 0, State: $

==>[r1 [in]: $ => ready .]===>

state 1, State: ready

==>[r1 [1]: ready => nestle .]===>

state 2, State: nestle

==>[r1 [chng]: nestle => q .]===>

state 5, State: q
The search Command (V)

Similarly, we can search for target terms reachable by one or more rewrite steps, or zero or more steps by typing (respectively):

- \(\text{search } t \Rightarrow+ t' \).
- \(\text{search } t \Rightarrow* t' \).
Furthermore, we can restrict any of those searches by giving an **equational condition** on the target term. For example, all terminating states reachable from $\$ other than broken can be found by the command,

```maude
Maude> search $ =>! X:State such that X:State /= broken .
search in CANDY-AUTOMATON : $ =>! X:State
such that X:State /= broken = true .
```

Solution 1 (state 5)
states: 6 in 0ms cpu (0ms real)
X:State --> q
Of course, in general there can be an infinite number of solutions to a given search. Therefore, a search can be restricted by giving as an extra parameter in brackets the number of solutions (i.e., target terms that are instances of the pattern and satisfy the condition) we want:

```
```

Solution 1 (state 4)
states: 6 in 0ms cpu (0ms real)
X:State --> broken
In our CANDY-AUTOMATON example the number of states is finite, but for a general rewrite theory the number of states reachable from an initial state can be infinite. So, even if we search for a single solution, the search process may not terminate, because \textit{no such solution exists}. To make search terminating, at least for unconditional rewrite rules, we can add a second parameter, namely, a bound on the \textit{length} of the paths searched from the initial state.

\begin{verbatim}
\end{verbatim}

No solution.
states: 2 rewrites: 2 in 0ms cpu (36ms real) (~ rewrites/second)
Our CANDY-AUTOMATON example is just a special instance of a general concept, namely, that of automaton, also called a labeled transition system (LTS) by which we mean a triple: \(A = (A, L, T) \) with:

- \(A \) is a set, called the set of states,
- \(L \) is a set called the set of labels, and
- \(T \subseteq A \times L \times A \) is called the set of labeled transitions.
LTS’s as Rewrite Theories

Note that we have associated to our candy automaton a rewrite theory (system module) CANDY-AUTOMATON.

This is of course just an instance of a general transformation, that assign to a LTS A a rewrite theory $R(A)$ with a single sort A, constants $x \in A$, and for each $(x, l, y) \in T$ a rewrite rule $l : x \rightarrow y$.
So far so good, but we have not yet seen any concurrency. The simplest concurrent system examples are probably the concurrent automata called Petri nets. Consider for example the picture,

![Petri Net Diagram]

- **buy-c**
- **buy-a**
- **change**

- **c**
- **a**
- **q**

q = 4
The previous picture represents a concurrent machine to buy cakes and apples; a cake costs a dollar and an apple three quarters.

Due to an unfortunate design, the machine only accepts dollars, and it returns a quarter when the user buys an apple; to alleviate in part this problem, the machine can change four quarters into a dollar.

The machine is concurrent, because we can push several buttons at once, provided enough resources exist in the corresponding slots, which are called places.
For example, if we have one dollar in the $ place, and four quarters in the $ place, we can **simultaneously** push the _buy-a_ and _change_ buttons, and the machine returns, also simultaneously, one dollar in $, one apple in a, and one quarter in q.

That is, we can achieve the **concurrent computation**,

\[
\text{buy-a change : } $ q q q q \rightarrow a q $. \]
This has a straightforward expression as a rewrite theory (system module) as follows:

mod PETRI-MACHINE is
 sort Marking .
 ops null $ c a q : -> Marking .
 rl [buy-c] : $ => c .
 rl [buy-a] : $ => a q .
 rl [chng] : q q q q => $.
endm
That is, we view the **distributed state** of the system as a **multiset of places**, called a **marking**, with identity for multiset union the empty multiset $null$.

We then view a **transition** as a **rewrite rule** from one (pre-)marking to another (post-)marking.
The rewrite rule can be applied *modulo associativity, commutativity and identity* to the distributed state iff its pre-marking is a submultiset of that state.

Furthermore, if the distributed state contains the union of several such presets, then *several transitions* can fire concurrently.

For example, from $\$$ $ $ we can get in one concurrent step to $c\ c\ a\ q$ by pushing twice (concurrently!) the `buy-c` button and once the `buy-a` button.
We can of course ask and get answers to questions about the behaviors possible in this system. For example, if I have a dollar and three quarters, can I get a cake and an apple?

Maude> search $ q q q =>+ c a M:Marking .
search in PETRI-MACHINE : $ q q q =>+ c a M:Marking .

Solution 1 (state 4)
states: 5 in 0ms cpu (0ms real)
M:Marking --> null

we can also interrogate the search graph,
Maude> show search graph .
state 0, Marking: $ q q q q
arc 0 ===> state 1 (rl [buy-c]: $ => c .)
arc 1 ===> state 2 (rl [buy-a]: $ => a q .)

state 1, Marking: c q q q

state 2, Marking: a q q q q
arc 0 ===> state 3 (rl [chng]: q q q q => $.)

state 3, Marking: $ a
arc 0 ===> state 4 (rl [buy-c]: $ => c .)
arc 1 ===> state 5 (rl [buy-a]: $ => a q .)

state 4, Marking: c a

state 5, Marking: a a q
Maude> show path 4 .
state 0, Marking: $ q q q q
====[rl [buy-a]: $ => a q .]====>
state 2, Marking: a q q q q q
====[rl [chng]: q q q q q => $.]====>
state 3, Marking: $ a
====[rl [buy-c]: $ => c .]====>
state 4, Marking: c a
What is Concurrency?

Why was concurrency impossible in our CANDY-AUTOMATON example, but possible in our little PETRI-MACHINE example?

The problem with CANDY-AUTOMATON, and with any LTS having unstructured states, is that its states are atomic, and, having no smaller pieces, cannot be distributed.

By contrast, a Petri net marking is made out of smaller pieces, namely its constituent places, and therefore can be distributed, so that several transitions can happen simultaneously.
Then what, is concurrency about multisets?

Not necessarily; this is the very common fallacy of taking the part for the whole; for example, “Logic Programming = Prolog,” or “Concurrency = Petri Nets”.

A more fair and open-minded answer is to give the rewriting logic motto:

Concurrent Structure = Algebraic Structure.
That is, any algebraic structure in the set of states, other than atomic constants, even a single unary operator, will open the possibility for the states to be distributed, and therefore for transitions being concurrent.

Of course that potential for concurrency may be frustrated by the specific transitions of a system forcing a sequential execution, but the potential is there if we use other transitions.

In summary, there are as many possible styles of concurrent systems as there are signatures Σ and equations E. For example: multiset concurrency, tree concurrency, string concurrency, and many, many other possibilities.
I give the Meseguer-Montanari “Petri nets are monoids” definition, instead than the usual, but less enlightening, multigraph definition.

A place-transition Petri net N consists of:

- a set P of places; we then call markings to the elements in the free commutative monoid $M(P)$ of finite multisets of P.

- a labeled transition system $N = (M(P), L, T)$.
The general transformation associating a rewrite theory $R(N)$ to each Petri net N is then obvious. $R(N)$ has:

- a single sort, named, say $M(P)$, or just $Marking$, with constants the elements of P and a $null$ constant.

- a binary operator

 _ _ : Marking Marking \longrightarrow Marking $[assoc\ comm\ id : \ null]$

- for each $(m, l, m') \in T$ a rewrite rule $l : m \longrightarrow m'$.

The computations of a net N are not just paths, since we can now take several concurrent steps at once. They are generated as follows:

- **Reflexivity.**
 \[
 m \in M(P) \\
 m \xrightarrow{m} m
 \]

- **Basic Transition.**
 \[
 (m, l, m') \in T \\
 m \xrightarrow{l} m'
 \]

- **Congruence.**
 \[
 m \xrightarrow{\alpha} m' \\
 u \xrightarrow{\beta} u' \\
 m u \xrightarrow{\alpha \beta} m' u'
 \]
• Transitivity.

\[
\begin{align*}
 m \xrightarrow{\alpha} u & \quad u \xrightarrow{\beta} v \\
 \hline
 m \xrightarrow{\alpha;\beta} v
\end{align*}
\]

We will see later that, when we view Petri nets as rewrite theories, the above inference system generating all Petri net computations of a net \(N \) coincides with the specialization of the general inference system of rewriting logic to the rewrite theory \(R(N) \).

This illustrates a general point, namely, that rewriting logic is a very expressive semantic framework, in which many different concurrency models can be naturally specified.