Program Verification: Lecture 2

José Meseguer

Computer Science Department
University of Illinois at Urbana-Champaign
Theories in equational logic are called equational theories. In Computer Science they are sometimes referred to as algebraic specifications.

An equational theory is a pair \((\Sigma, E)\), where:

- \(\Sigma\), called the signature, describes the syntax of the theory, that is, what types of data and what operation symbols (function symbols) are involved;

- \(E\) is a set of equations between expressions (called terms) in the syntax of \(\Sigma\).
Our syntax Σ can be more or less expressive, depending on how many types (called sorts) of data it allows, and what relationships between types it supports:

- **unsorted** (or single-sorted) signatures have only one sort, and operation symbols on it;

- **many-sorted** signatures allow different sorts, such as Integer, Bool, List, etc., and operation symbols relating these sorts;

- **order-sorted** signatures are many-sorted signatures that, in addition, allow inclusion relations between sorts, such as $\text{Natural} < \text{Integer}$.
Maude functional modules are equational theories \((\Sigma, E)\), declared with syntax

\[
\text{fmod } (\Sigma, E) \text{ endfm}
\]

Such theories can be unsorted, many-sorted, or order-sorted, or even more general membership equational theories (to be discussed later in the course).

In what follows we will see examples of unsorted, many-sorted and order-sorted equational theories \((\Sigma, E)\) expressed as Maude functional modules, and of how one can use such theories as functional programs by computing with the equations \(E\).
Unsorted Functional Modules

*** prefix syntax

fmod NAT-PREFIX is
 sort Natural .
 op 0 : -> Natural .
 op s : Natural -> Natural .
 op plus : Natural Natural -> Natural .
 vars N M : Natural .
 eq plus(N,0) = N .
 eq plus(N,s(M)) = s(plus(N,M)) .
endfm

Maude> red plus(s(s(0)),s(s(0))) .
reduce in NAT-PREFIX : plus(s(s(0)), s(s(0))) .
rewrites: 3 in -10ms cpu (0ms real) (~ rewrites/second)
result Natural: s(s(s(s(0))))
Maude>
Unsorted Functional Modules (II)

\[
\text{fmod NAT-MIXFIX is} \quad \text{*** mixfix syntax}
\]
\[
\begin{align*}
\text{sort Natural .} \\
\text{op 0 : } & \to \text{ Natural .} \\
\text{op s_ : } & \text{ Natural } \to \text{ Natural .} \\
\text{op _+_ : } & \text{ Natural Natural } \to \text{ Natural .} \\
\text{op *_* : } & \text{ Natural Natural } \to \text{ Natural .} \\
\text{vars N M : Natural .} \\
\text{eq N + 0 = N .} \\
\text{eq N + s M = s(N + M) .} \\
\text{eq N * 0 = 0 .} \\
\text{eq N * s M = N + (N * M) .}
\end{align*}
\]
\[
\text{endfm}
\]

\[
\text{Maude}\text{> red (s s 0) + (s s 0) .}
\]
\[
\text{reduce in NAT-MIXFIX : s s 0 + s s 0 .}
\]
\[
\text{rewrites: 3 in 0ms cpu (0ms real) (~ rewrites/second)}
\]
\[
\text{result Natural: s s s s 0}
\]
\[
\text{Maude}\text{>}
\]
fmod NAT-LIST is
 protecting NAT-MIXFIX .
 sort List .
 op nil : -> List .
 op _._ : Natural List -> List .
 op length : List -> Natural .
 var N : Natural .
 var L : List .
 eq length(nil) = 0 .
 eq length(N . L) = s length(L) .
endfm

Maude> red length(0 . (s 0 . (s s 0 . (0 . nil))))) .
reduce in NAT-LIST : length(0 . s 0 . s s 0 . 0 . nil) .
rewrites: 5 in 0ms cpu (0ms real) (~ rewrites/second)
result Natural: s s s s 0
Maude>
Many-Sorted Signatures

The full signature Σ of the NAT-LIST example, that imports NAT-MIXFIX, is then,

sorts Natural List .

op 0 : -> Natural .

op s_ : Natural -> Natural .

op _+_ : Natural Natural -> Natural .

op *_* : Natural Natural -> Natural .

op nil : -> List .

op _._ : Natural List -> List .

op length : List -> Natural .
We can naturally represent a many-sorted signature as a labeled multigraphs whose nodes are the sorts, and whose labeled edges are the operation symbols.

In a normal labeled graph a directed edge links an input node to an output node. Instead, in a multigraph an edge links zero, one, or several input nodes to an output node. So, we view an operator like

$$\text{op \, __ : Natural List -> List .}$$

as a labeled edge having two input nodes and one output node (see Picture 2.1). When all operations are unary, signatures are exactly labeled graphs (see Picture 2.2)
An **many-sorted signature** is a pair \(\Sigma = (S, F) \), with:

- \(S \) a set whose elements \(s, s', s'', \ldots \in S \) are called **sorts**, and

- \(F \), called the set of **function symbols**, is an \(S^* \times S \)-indexed set \(F = \{ F_w, \} \) \((w, s) \in S^* \times S \), where if \(f \in F_{s_1 \ldots s_n, s} \) then we display it as \(f : s_1 \ldots s_n \rightarrow s \) and call sequence of sorts \(s_1 \ldots s_n \in S^* \) the **argument sorts**, and \(s \in S \) the **result sort**. When \(n = 0 \), we call \(f \in F_{\text{nil}, s} \), with \(\text{nil} \) the empty sequence, a **constant**.
In full detail, the signature Σ in our NAT-LIST example has:

set of sorts $S = \{\text{Natural}, \text{List}\}$, and indexed family F of sets of function symbols:

\[
F_{\text{nil}, \text{Natural}} = \{0\}, \quad F_{\text{nil}, \text{List}} = \{\text{nil}\}, \quad F_{\text{Natural, Natural}} = \{s\}, \quad F_{\text{Natural, Natural, Natural}} = \{\text{+, -}, \text{-*}\}, \quad F_{\text{Natural List, List}} = \{\text{-*}\}, \quad F_{\text{List, Natural}} = \{\text{length}\}.
\]

Similarly, the signature Σ in our NAT-PREFIX example has $S = \{\text{Natural}\}$ an indexed family G of sets of function symbols:

\[
G_{\text{nil}, \text{Natural}} = \{0\}, \quad G_{\text{Natural, Natural}} = \{s\}, \quad G_{\text{Natural Natural, Natural}} = \{\text{plus}\}.
\]
The Need for Order-Sorted Signatures

Many-sorted signatures are still too restrictive. The problem is that some operations are partial, and there is no natural way of defining them in just a many-sorted framework.

Consider for example defining a function first that takes the first element of a list of natural numbers, or a predecessor function \(p \) that assigns to each natural number its predecessor. What can we do? If we define,

\[
\text{op first : List \to Natural .} \\
\text{op p_ : Natural \to Natural .}
\]

we have then the awkward problem of defining the values of \(\text{first(nil)} \) and of \(p 0 \), which in fact are undefined.
The Need for Order-Sorted Signatures (II)

A much better solution is to recognize that these functions are partial with the typing just given, but become total on appropriate subsorts NeList < List of nonempty lists, and NzNatural < Natural of nonzero natural numbers. If we define,

\[
\begin{align*}
\text{op } s__ &: \text{Natural } \rightarrow \text{NzNatural} . \\
\text{op } __ &: \text{Natural List } \rightarrow \text{NeList} . \\
\text{op } \text{first} &: \text{NeList } \rightarrow \text{Natural} . \\
\text{op } p__ &: \text{NzNatural } \rightarrow \text{Natural} .
\end{align*}
\]

everything is fine. Subsorts also allow us to overload operator symbols. For example, Natural < Integer, and

\[
\begin{align*}
\text{op } _+_ &: \text{Natural Natural } \rightarrow \text{Natural} . \\
\text{op } _+_ &: \text{Integer Integer } \rightarrow \text{Integer} .
\end{align*}
\]
fmod NATURAL is
 sorts Natural NzNatural .
 subsorts NzNatural < Natural .
 op 0 : -> Natural .
 op s_ : Natural -> NzNatural .
 op p_ : NzNatural -> Natural .
 op _+_: Natural Natural -> Natural .
 op _+_: NzNatural NzNatural -> NzNatural .
 vars N M : Natural .
 eq p s N = N .
 eq N + 0 = N .
 eq N + s M = s(N + M) .
endfm

Maude> red p((s s 0) + (s s 0)) .
reduce in NATURAL : p (s s 0 + s s 0) .
rewrites: 4 in 0ms cpu (0ms real) (~ rewrites/second)
result NzNatural: s s s 0
fmod NAT-LIST-II is
 protecting NATURAL .
sorts NeList List .
subsorts NeList < List .
op nil : -> List .
op _._ : Natural List -> NeList .
op length : List -> Natural .
op first : NeList -> Natural .
op rest : NeList -> List .
var N : Natural .
var L : List .
eq length(nil) = 0 .
eq length(N . L) = s length(L) .
eq first(N . L) = N .
eq rest(N . L) = L .
endfm
An order-sorted signature Σ is a pair $\Sigma = ((S, <), F)$ where (S, F) is a many-sorted signature, and where $<$ is a partial order relation on the set S of sorts called subsort inclusion.

That is, $<$ is a binary relation on S that is:

- *irreflexive*: $\neg(x < x)$
- *transitive*: $x < y$ and $y < z$ imply $x < z$

Any such relation $<$ has an associated \leq relation that is reflexive, antisymmetric, and transitive. We will move back and forth between $<$ and \leq (see STACS 7.4).

Note: Unless specified otherwise, by a signature we will always mean an order-sorted signature.
Given a signature Σ, we can define an equivalence relation (see STACS 7.6) \equiv_{\leq} between sorts $s, s' \in S$ as the smallest relation such that:

- if $s \leq s'$ or $s' \leq s$ then $s \equiv_{\leq} s'$

- if $s \equiv_{\leq} s'$ and $s' \equiv_{\leq} s''$ then $s \equiv_{\leq} s''$

We call the equivalence classes modulo \equiv_{\leq} the connected components of the poset order (S, \leq). Intuitively, when we view the poset as a directed acyclic graph, they are the connected components of the graph (see STACS 7.6, Exercise 68).
Connected Components Example

\[
S/ \equiv \leq = \{\{\text{NzNatural}, \text{Natural}, \text{NzInteger}, \text{Integer}\}, \{\text{Nelist}, \text{List}\}, \{\text{Bool}, \text{Prop}\}\}
\]
In general, the same operator name may have different declarations in the same signature Σ. For example, in the NATURAL module we have,

\[
\begin{align*}
\text{op } _\text{+_} : \text{Natural} \text{ Natural } \to \text{Natural} . \\
\text{op } _\text{+_} : \text{NzNatural} \text{ NzNatural } \to \text{NzNatural} .
\end{align*}
\]

When we have two operator declarations, $f : w \to s$, and $f : w' \to s'$, with w and w' strings of equal length, then: (1) if $w \equiv_\leq w'$ and $s \equiv_\leq s'$, we call them subsort overloaded; (2) otherwise, e.g, $+_\text{for}$ Natural and for exclusive or in Bool, we call them ad-hoc overloaded.
Since an order-sorted signature is a many-sorted signature whose set of nodes is a poset, we can describe them graphically as labeled multigraphs whose set of nodes is a poset.

We can picture subsort inclusions as usual for partial orders, and operators, as before, as labeled edges in the multigraph. For example, the order-sorted signature of the module \texttt{NAT-LIST-II} is depicted this way in Picture 2.3.