Program Verification: Lecture 8

José Meseguer

Computer Science Department
University of Illinois at Urbana-Champaign
Termination

We need methods to check termination of an equational theory \((\Sigma, E)\). For unconditional equations \(E\) this means proving that the rewriting relation \(\rightarrow_{E}\) (or, more generally, \(\rightarrow_{E/B}\) for \((\Sigma, E \cup B)\)) is well-founded.

The key observation is that, if we exhibit a well-founded ordering \(>\) on terms such that

\[(\bullet) \quad t \rightarrow_{E} t' \Rightarrow t > t',\]

then we have obviously proved termination, since nontermination of \(\rightarrow_{E}\) would make the order \(>\) non-well-founded.
To show (♣) we need to consider an, infinite number of rewrites $t \rightarrow_E t'$. We would like to reduce this problem to checking (♣) only for the equations in E. We need:

Definition: A well-founded ordering $>$ on $\cup_{s \in S} T_\Sigma(V)$ is called a reduction ordering iff it satisfies the following two conditions:

- **strict Σ-monotonicity**: for each $f \in \Sigma$, whenever $f(t_1, \ldots, t_n), f(t_1, \ldots, t_{i-1}, t'_i, t_{i+1}, \ldots, t_n) \in T_\Sigma(V)$ with $t_i > t'_i$, we have,

 $$f(t_1, \ldots, t_n) > f(t_1, \ldots, t_{i-1}, t'_i, t_{i+1}, \ldots, t_n)$$

- **closure under substitutuion**: if $t > t'$, then, for any substitution $\theta : V \rightarrow T_\Sigma(V)$ we have, $t\theta > t'\theta$.

Theorem: Let \((\Sigma, E)\) be an (unconditional) equational theory. Then, \(E\) is terminating iff there exists a reduction order \(>\) such that for each equation \(u = v\) in \(E\) we have, \(u > v\).

Proof: The \((\Rightarrow)\) part follows from the observation that, if \(E\) is terminating, the transitive closure \(\xrightarrow{+} E\) of the relation \(\xrightarrow{E}\) is a reduction order satisfying this requirement.

To see \((\Leftarrow)\), it is enough to show that a reduction order with the above property satisfies the implication (♣). Let \(t \xrightarrow{E} t'\) this means that there is a position \(\pi\) in \(t\), an equation \(u = v\) in \(E\), and a substitution \(\theta\) such that \(t = t[\pi \leftarrow \overline{\theta}(u)]\), and \(t' = t[\pi \leftarrow \overline{\theta}(v)]\). But by closure under substitution we have, \(\overline{\theta}(u) > \overline{\theta}(v)\) and by repeated application of strict \(\Sigma\)-monotonicity we then have, \(t > t'\). q.e.d.
Recursive Path Ordering (RPO)

The recursive path ordering (RPO) is based on the idea of giving an ordering on the function symbols in Σ, which is then extended to a reduction ordering on all terms. Since if Σ is finite the number of possible orderings between function symbols in Σ is also finite, checking whether a proof of termination exists this way can be automated.

The intuitive idea that functions that are more complex should be bigger in the ordering (for example: $_\times_ > _+_ > s$) tends to work quite well, and can yield a reduction ordering containing the equations. Furthermore each symbol f in Σ is given a status $\tau(f)$ equal to either: $\tau(f) = lex(\pi)$ (lexicographic), or $\tau(f) = mult$ (multiset). $\tau(f)$ indicates how the arguments of f should be compared in the order.
Given a finite signature Σ and an ordering $>\sigma$ and a status function τ on its symbols, the recursive path ordering $>_\text{rpo}$ on $\bigcup_{s\in S} T_\Sigma(V)$ is defined recursively as follows. $u >_{\text{rpo}} t$ iff:

$u = f(u_1, \ldots, u_n)$, and either:

1. $u_i >_{\text{rpo}} t$ for some $1 \leq i \leq n$, or

2. $t = g(t_1, \ldots, t_m)$, $u >_{\text{rpo}} t_j$ for all $1 \leq j \leq m$, and either:
 - $f > g$, or
 - $f = g$ and $\langle u_1, \ldots, u_n \rangle >_{\text{rpo}}^\tau \langle t_1, \ldots, t_n \rangle$

where the extension of $>_\text{rpo}$ to an order $>_\text{rpo}^\tau$ on lists of terms is explained below.
The extension of $\tau(f)$ on lists of terms is defined as follows:

- If f has n arguments and $\tau(f) = \text{lex}(\pi)$ with π a permutation on n elements, then
 \[
 \langle u_1, \ldots, u_n \rangle >_{\tau(f)}^r \langle t_1, \ldots, t_n \rangle \text{ iff there exists } i, 1 \leq i \leq n \text{ such that for } j < i \ u_{\pi(j)} = t_{\pi(j)}, \text{ and } u_{\pi(i)} > t_{\pi(i)}.
 \]

- If $\tau(f) = \text{mult}$, then
 \[
 \langle u_1, \ldots, u_n \rangle >_{\tau(f)}^r \langle t_1, \ldots, t_n \rangle \text{ iff we have } \{u_1, \ldots, u_n\} >_{\text{mult}}^r \{t_1, \ldots, t_n\}
 \]

where, given any order $>$ on a set A, it extension to an order $>_{\text{mult}}^r$ on the set $\text{Mult}(A)$ of multisets on A is the transitive closure of the relation $>_{\text{mult}}^r$ defined by

\[
M \cup a >_{\text{mult}}^r M \cup S \text{ iff } (\forall x \in S) \ a > x, \text{ where } S \text{ can be } \emptyset.
\]
It can be shown (for a detailed proof see the Terese book cited later) that for a finite signature Σ RPO is a reduction order. We can therefore use it to prove termination.

Consider for example the usual equations for natural number addition: $n + 0 = n$ and $n + s(m) = s(n + m)$. We can prove that they are terminating by using the RPO associated to the ordering $+ > s > 0$ with $\tau(f) = lex(id)$ for each symbol f. Indeed, it is then trivial to check that $n + 0 \triangleright_{\text{rpo}} n$ and $n + s(m) \triangleright_{\text{rpo}} s(n + m)$.
To prove that rewriting modulo axioms B are terminating, we need a reduction order that is compatible with the axioms B. That is, if $u > t$, $u =_B u'$ and $t =_B t'$, then we must always have $u' > t'$. This means that $>$ defines also an order on the set, $\bigcup_{s \in S} T_{\Sigma/B}(X)$. For example, RPO is compatible with commutativity axioms if we specify $\tau(f) = \text{mult}$ for each commutative symbol f.

To make RPO compatible with associative and commutative symbols it has been generalized to the $AC.RPO$ order by a method of flattening AC symbols. E.g., for $f AC$, $f(f(a,b), f(c,d))$ flattens to $f(a,b,c,d)$. $AC.RPO$ can be further generalized to the $A \lor C.RPO$ order, where some symbols can be associative and/or commutative.
A simple tool can be used to prove termination modulo any $A \lor C$ axioms using the $A \lor C.RPO$ reduction order, or just modulo C or AC using $AC.RPO$.

To prove a functional module `foo.maude` terminating:

1. Define a total order on the operators Σ using Maude’s metadata attribute, and load in Maude Σ (with the axioms and the metadata) in a file, say, `sig-foo.maude`

2. Load the tool into Maude as the file `acrpo.maude`

3. Then load a file `check-foo.maude` to check that each equations $u = v$ in `foo.maude` satisfies $u >_{AC.rpo} v$ or $u >_{A \lor C.rpo} v$, depending on whether the axiom are only C or AC, or also include A.

Example. To prove $AC.RPO$-termination of `natu.maude` defining addition, multiplication and exponentiation:

```maude
fmod NATU is sort Natu .
   op 0 : -> Natu [ctor] .
   op s : Natu -> Natu [ctor] .
   op _*_ : Natu Natu -> Natu [metadata] .

   eq X:Natu + 0 = X:Natu .
   eq X:Natu + s(Y:Natu) = s(X:Natu + Y:Natu) .
   eq X:Natu * 0 = (0).Natu .
   eq X:Natu * s(Y:Natu) = (X:Natu * Y:Natu) + X:Natu .
   eq X:Natu ^ 0 = (s(0)).Natu .
   eq X:Natu ^ s(Y:Natu) = X:Natu * (X:Natu ^ Y:Natu) .
endfm
```

First define a total order on symbols in `sig-natu.maude`
fmod TEST is

sort Natu .
sort U . *** universal sort added
subsorts Natu < U .

op 0 : -> Natu [ctor metadata "1"] .
op s : Natu -> Natu [ctor metadata "2"] .
op _+_ : Natu Natu -> Natu [comm metadata "3"] .
op _*_ : Natu Natu -> Natu [metadata "4"] .
op _^_ : Natu Natu -> Natu [metadata "5"] .

endfm

Note that: (i) we have only kept the signature of natu.maude, (ii) we have added a universal sort U bigger than all other sorts, (iii) we have ordered the symbols (here in increasing order) by using the metadata attribute, (iv) the module must always be called TEST.
Proving Termination with $A \lor C.RPO$ (IV)

After loading `sig-natu.maude` and `acrpo.maude` into Maude, we then load the following file `check-natu.maude` to check that `natu.maude` is $A.C.RPO$-terminating with this order.

\[
\begin{align*}
\text{red } X: \text{Natu} + 0 & \rightarrowAC \ X: \text{Natu} . \\
\text{red } X: \text{Natu} + s(Y: \text{Natu}) & \rightarrowAC s(X: \text{Natu} + Y: \text{Natu}) . \\
\text{red } X: \text{Natu} \times 0 & \rightarrowAC (0). \text{Natu} . \\
\text{red } X: \text{Natu} \times s(Y: \text{Natu}) & \rightarrowAC (X: \text{Natu} \times Y: \text{Natu}) + X: \text{Natu} . \\
\text{red } X: \text{Natu} \wedge 0 & \rightarrowAC (s(0)). \text{Natu} . \\
\text{red } X: \text{Natu} \wedge s(Y: \text{Natu}) & \rightarrowAC X: \text{Natu} \times (X: \text{Natu} \wedge Y: \text{Natu}) .
\end{align*}
\]

Indeed, all reduce commands yield @#true#@.
Proving Termination with $A \lor C.RPO$ (V)

To prove $A \lor C.RPO$-termination of list (associative) and sets (associative-commutative) of naturals in natuls.maude

fmod NATU-LS is sorts Natu NatuList NatuSet .
 subsorts Natu < NatuList NatuSet .
 op 0 : -> Natu [ctor] .
 op s : Natu -> Natu [ctor] .
 op _+_: Natu Natu -> Natu [comm] .
 op _*: Natu Natu -> Natu .
 op _^_: Natu Natu -> Natu .
 op _,,_: NatuSet NatuSet -> NatuSet [ctor assoc comm] .
 op __ : NatuList NatuList -> NatuList [ctor assoc] .
 op length : NatuList -> Natu .
 op rev : NatuList -> NatuList .
 op list2set : NatuList -> NatuSet .
eq X:Natu + 0 = X:Natu .
eq X:Natu + s(Y:Natu) = s(X:Natu + Y:Natu) .
eq X:Natu * 0 = (0).Natu .
eq X:Natu * s(Y:Natu) = (X:Natu * Y:Natu) + X:Natu .
eq X:Natu ^ 0 = (s(0)).Natu .
eq S:NatuSet , S:NatuSet = S:NatuSet .
eq X:Natu ^ s(Y:Natu) = X:Natu * (X:Natu ^ Y:Natu) .
eq length((nil).NatuList) = (0).Natu .
eq length(X:Natu) = (s(0)).Natu .
eq length(X:Natu L:NatuList) = s(length(L:NatuList)) .
eq rev(X:Natu) = X:Natu .
eq list2set((nil).NatuList) = (mt).NatuSet .
eq list2set(X:Natu) = X:Natu .
eq list2set(X:Natu L:NatuList) = X:Natu , list2set(L:NatuList) .
endfm

First load into Maude the sig-natuls.maude module:

Proving Termination with $A \vee C.RPO$ (VI)

fmod TEST is

sorts Natu NatuList NatuSet .

subsorts Natu < NatuList NatuSet .

sort U .

subsorts NatuList NatuSet < U .

op 0 : -> Natu [ctor metadata "1"] .

op mt : -> NatuSet [ctor metadata "2"] .

op nil : -> NatuList [ctor metadata "3"] .

op s : Natu -> Natu [ctor metadata "4"] .

op _+_ : Natu Natu -> Natu [comm metadata "5"] .

op _*_ : Natu Natu -> Natu [metadata "6"] .

op _^_ : Natu Natu -> Natu [metadata "7"] .

op __,__ : NatuSet NatuSet -> NatuSet [ctor assoc comm metadata "8"] .

op ___ : NatuList NatuList -> NatuList [ctor assoc metadata "9"] .

op length : NatuList -> Natu [metadata "10"] .

op rev : NatuList -> NatuList [metadata "11"] .

op list2set : NatuList -> NatuSet [metadata "12"] .

endfm
The above file sig-natuls.maude defines a total order on the symbols of natuls.maude. In this case the order has been chosen to be an ascending order on the list of symbols.

Since list concatenation is associative but not commutative, we now need to use the $A \lor C.RPO$ order (denoted $\succ A \lor C$ in the tool). For this we:

- load acrpo.maude into Maude, and

- then load the check-natuls.maude file, which gives the following reduce commands for each equation (all come out @#true#@):
Proving Termination with $A \lor C.RPO$ (VII)

\[
\begin{align*}
\text{red } X : \text{Natu} + 0 & > \text{AvC } X : \text{Natu} . \\
\text{red } X : \text{Natu} + s(Y : \text{Natu}) & > \text{AvC } s(X : \text{Natu} + Y : \text{Natu}) . \\
\text{red } X : \text{Natu} * 0 & > \text{AvC } (0).\text{Natu} . \\
\text{red } X : \text{Natu} * s(Y : \text{Natu}) & > \text{AvC } (X : \text{Natu} * Y : \text{Natu}) + X : \text{Natu} . \\
\text{red } X : \text{Natu} ^ 0 & > \text{AvC } (s(0)).\text{Natu} . \\
\text{red } S : \text{NatuSet} , S : \text{NatuSet} & > \text{AvC } S : \text{NatuSet} . \\
\text{red } X : \text{Natu} ^ s(Y : \text{Natu}) & > \text{AvC } X : \text{Natu} * (X : \text{Natu} ^ Y : \text{Natu}) . \\
\text{red } \text{length}((\text{nil}).\text{NatuList}) & > \text{AvC } (0).\text{Natu} . \\
\text{red } \text{length}(X : \text{Natu}) & > \text{AvC } (s(0)).\text{Natu} . \\
\text{red } \text{length}(X : \text{Natu} L : \text{NatuList}) & > \text{AvC } s(\text{length}(L : \text{NatuList})) . \\
\text{red } \text{rev}((\text{nil}).\text{NatuList}) & > \text{AvC } (\text{nil}).\text{NatuList} . \\
\text{red } \text{rev}(X : \text{Natu}) & > \text{AvC } X : \text{Natu} . \\
\text{red } \text{rev}(X : \text{Natu} L : \text{NatuList}) & > \text{AvC } \text{rev}(L : \text{NatuList}) X : \text{Natu} . \\
\text{red } \text{list2set}((\text{nil}).\text{NatuList}) & > \text{AvC } (\text{mt}).\text{NatuSet} . \\
\text{red } \text{list2set}(X : \text{Natu}) & > \text{AvC } X : \text{Natu} . \\
\text{red } \text{list2set}(X : \text{Natu} L : \text{NatuList}) & > \text{AvC } X : \text{Natu} , \text{list2set}(L : \text{NatuList}) .
\end{align*}
\]
Another general method of defining suitable reduction orderings is based on polynomial orderings. In its simplest form we can just use polynomials on several variables whose coefficients are natural numbers. For example,

\[p = 7x_1^3x_2 + 4x_2^2x_3 + 6x_3^2 + 5x_1 + 2x_2 + 11 \]

is one such polynomial. Note that a polynomial \(p \) whose biggest indexed variable is \(n \) (in the above example \(n = 3 \)) defines a function \(p_{\mathbb{N}_{\geq k}} : \mathbb{N}_{\geq k}^n \rightarrow \mathbb{N}_{\geq k} \) (where \(k \geq 3 \) and \(\mathbb{N}_{\geq k} = \{n \in \mathbb{N} \mid n \geq k\} \)), just by evaluating the polynomial on a given tuple of numbers greater or equal to \(k \). For \(p \) the polynomial above we have for example, \(p_{\mathbb{N}_{\geq k}}(3, 3, 3) = 383 \).
Note also that we can order the set \([\mathbb{N}^n_{\geq k} \rightarrow \mathbb{N}_{\geq k}]\) of functions from \(\mathbb{N}^n_{\geq k}\) to \(\mathbb{N}_{\geq k}\) by defining \(f > g\) iff for each \((a_1, \ldots a_n) \in \mathbb{N}^n_{\geq k}\) \(f(a_1, \ldots a_n) > g(a_1, \ldots a_n)\). Notice that this order is well-founded, since if we have an infinite descending chain of functions

\[
f_1 > f_2 > \ldots f_n > \ldots
\]

by choosing any \((a_1, \ldots a_n) \in \mathbb{N}^n_{\geq k}\) we would get a descending chain of positive numbers

\[
f_1(a_1, \ldots a_n) > f_2(a_1, \ldots a_n) > \ldots f_n(a_1, \ldots a_n) > \ldots
\]

which is impossible.
The method of polynomial orderings then consists in assigning to each function symbol \(f : s_1 \ldots s_n \rightarrow s \) in \(\Sigma \) a polynomial \(p_f \) involving exactly the variables \(x_1, \ldots x_n \) (all of them, and only them must appear in \(p_f \)). If \(f \) is subsort overloaded, we assign the same \(p_f \) to all such overloading.

Also, to each constant symbol \(b \) we likewise associate a positive number \(p_b \in \mathbb{N}_{\geq k} \).

Suppose, to simplify notation, that in our set \(E \) of equations we have used exactly \(m \) different variables, denoted \(x_1, \ldots x_m \), each declared with its corresponding sort. Let us denote \(X = \{x_1, \ldots x_m\} \). Then our assignment of a polynomial to each function symbol and a number to each constant extends to a function.
Polynomial Orderings (IV)

\[p_- : T_{\Sigma^u(X)} \rightarrow \mathbb{N}[X] \]

where \(\Sigma^u \) is the unsorted version of \(\Sigma \), \(\mathbb{N}[X] \) denotes the polynomials with natural number coefficients in the variables \(X \), and where \(p_- \) is defined in the obvious, homomorphic way:

- \(p_b = p_b \)
- \(p_{x_i} = x_i \)
- \(p_{f(t_1, \ldots, t_n)} = p_f \{ x_1 \mapsto p_{t_1}, \ldots, x_n \mapsto p_{t_n} \} \)
Note that the polynomial interpretation p induces a well-founded ordering $>_p$ on the terms of $T_{\Sigma(X)}$ as follows:

$$t >_p t' \iff p_{t_{N \geq k}} > p_{t'_{N \geq k}}$$

where if $X = \{x_1, \ldots x_k\}$, we interpret $p_{t_{N \geq k}}$ and $p_{t'_{N \geq k}}$ as functions in $[N^m_{\geq k} \to N_{\geq k}]$. The relation $>_p$ is clearly an irreflexive and transitive relation on terms in $T_{\Sigma(X)} \subseteq T_{\Sigma^u(X)}$, therefore a strict ordering, and is clearly well-founded, because otherwise we would have an infinite descending chain of polynomial functions in $[N^m_{\geq k} \to N_{\geq k}]$, which is impossible.
Polynomial Orderings (VI)

We now need to check that this ordering is furthermore: (i) strictly \(\Sigma \)-monotonic, and (ii) closed under substitution. Condition (i) follows easily from the fact that for each function symbol \(f : s_1 \ldots s_n \rightarrow s \) in \(\Sigma \) \(p_f \) involves exactly the variables \(x_1, \ldots x_n \) (\(p_f \) does not drop any variables and all coefficients are non-zero). Therefore, \(p_f \mathbb{N}_{\geq k} \), viewed as a function of \(n \) arguments, is strictly monotonic in each of its arguments. Condition (ii) follows from the following general property of the \(p_- \) function, which is left as an excercise:

\[
p_t\{x_1 \mapsto u_1, \ldots, x_n \mapsto u_n\} = p_t\{x_1 \mapsto p_{u_1}, \ldots, x_n \mapsto p_{u_n}\}.
\]

This then easily yields that if \(t >_p t' \) then
\[
t\{x_1 \mapsto u_1, \ldots, x_n \mapsto u_n\} >_p t'\{x_1 \mapsto u_1, \ldots, x_n \mapsto u_n\}, \text{ as desired.}
\]
Therefore, polynomial interpretations of this kind define reduction orderings and can be used to prove termination. Consider for example the single equation $f(g(x)) = g(f(x))$ in an unsorted signature having also a constant a. Is this equation terminating? We can prove that it is so by the following polynomial interpretation:

- $p_f = x_1^3$
- $p_g = 2x_1$
- $p_a = 1$

since we have the following strict inequality of functions: $((2x^3)_{N_{\geq k}} > (2(x^3))_{N_{\geq k}}$, showing that $f(g(x)) >_p g(f(x))$.
Some polynomial interpretations are compatible with certain axioms. For example, a symmetric polynomial such that \(p(x, y) = p(y, x) \) is compatible with commutativity and can therefore be used to interpret a commutative symbol. For example, \(2x + 2y \) is symmetric. Similarly, a polynomial \(p(x, y) \) which is symmetric (\(p(x, y) = p(y, x) \)) and furthermore satisfies the associativity equation \(p(x, p(y, z)) = p(p(x, y), z) \) can be used to interpret an associative-commutative symbol. As shown by Bencheriffa and Lescanne the polynomials satisfying these two conditions have a simple characterization: they must be of the form \(axy + b(x + y) + c \) with \(ac + b - b^2 = 0 \).
The Maude Termination Tool (MTT) is a tool that can be used to prove the operational termination of Maude functional modules. In general, such modules can be conditional and may be not just order-sorted, but membership equational theories.

They may involve axioms like associativity and commutativity; and they may also have evaluation strategies (see Maude 2.2 manual, Section 4.4.7) indicating what arguments of a function symbol should be evaluated before applying equations for that symbol. For example, in an if_then_else_fi the first argument should be evaluated before equations for it are applied; and in a "lazy list cons" _;_ the first argument is evaluated, but not the second.
Features such as sorts, subsorts, memberships, and evaluation strategies may be essential for the termination of a Maude module. That is, ignoring them may result in a nonterminating module.

To preserve these features somehow, while still allowing using standard termination backend tools, the MTT implements the transformations of \((\Sigma, E)\) first into an unsorted conditional theory \((\Sigma^\circ, E^\circ)\), and then \((\Sigma^\circ, E^\circ)\) is transformed into an unsorted unconditional theory \((\Sigma^\bullet, E^\bullet)\).

If the module declares evaluation strategies, they are also transformed; but at the end evaluation strategies can either be used directly by a termination tool like Mu-Term, or a further theory transformation can eliminate such strategies.
The MTT Tool (III)

The course web page indicates where MTT has been installed. By typing: "./MTT" and carriage return the tool’s GUI comes up and the user can interact with it. By using the File menu one can enter a Maude module into the tool.

Once a Maude module (enclosed in parentheses, and not importing any built-in modules) has been entered, the user can perform the theory transformation $(\Sigma, E) \mapsto (\Sigma^\bullet, E^\bullet)$ in one of three increasingly simpler modes: (1) **Complete**; (2) **No Kinds**; and (3) **No Sorts**. In case (2) kinds are ignored; and in case (3) both kinds and sorts are ignored. There is a tradeoff between simplicity of the transformation and its tightness. Sometimes a simpler transformation works better, and sometimes a more complete one is essentially needed.
The choice of transformation can be made by clicking the appropriate buttons (a screenshot will show this). But one also needs to choose which backend termination tool for unsorted and unconditional specifications will be used. One among the CiME, MU-TERM, and AProVE termination tools can be chosen.

Then one can click on the Check bar to check the specification with the chosen tool. Some of these tools offer choices for different settings. So, we can try to prove termination using three different transformation variants, and then with one of three backend tools, sometimes customizing the particular tool choices. This maximizes the chances of obtaining a successful termination proof.
What the tool then demonstrates is that the original Maude functional module is *operationally terminating*. The correctness of such a proof is based on:

- the correctness of the theory transformations (see paper in course web page); and

- the correctness of the chosen tools, that sometimes output a justification of how they proved termination.

A screenshot of a tool interaction is given in the next page.
(fmod PEANO is
 sort Nat .
 op O : Nat [ctor].
 op s : Nat -> Nat [ctor].
 op plus : Nat Nat -> Nat .
 vars M N : Nat .
 eq plus(M, s(N)) = s(plus(M, N)) .
 eq plus(M, O) = M .
 op times : Nat Nat -> Nat .
 eq times(M, s(N)) = plus(times(M, N), M) .
 eq times(M, O) = O .
 endf)

We obtain no new DP problems.

Termination of R successfully shown.

Duration: 0:00 minutes
All the termination tools try to prove that a set of equations E, conditional or unconditional, is terminating by applying different proof methods; for example by trying to see if particular orderings can be used to prove the equations terminating.

But these termination proof methods are not decision procedures: in general termination of a set of equations (even if they are unconditional) is undecidable. However, termination is decidable for finite sets of unconditional equations E such that both the lefthand and the righthand sides are ground terms, or even if just the righthand sides are ground terms (see Chapter 5 in Baader and Nipkow, “Term Rewriting and All That”, Cambridge U.P.).
Besides RPO and polynomials there are various other orderings and a general “dependency pairs” method that can be used to prove termination. Good sources include: TeReSe, “Term Rewriting Systems,” Cambridge U. P., 2003.

