Equational Theories

Theories in equational logic are called equational theories. In Computer Science they are sometimes referred to as algebraic specifications.

An equational theory is a pair (Σ, E), where:

- Σ, called the signature, describes the syntax of the theory, that is, what types of data and what operation symbols (function symbols) are involved;

- E is a set of equations between expressions (called terms) in the syntax of Σ.
Our syntax Σ can be more or less expressive, depending on how many types (called sorts) of data it allows, and what relationships between types it supports:

- **unsorted** (or single-sorted) signatures have only one sort, and operation symbols on it;

- **many-sorted** signatures allow different sorts, such as Integer, Bool, List, etc., and operation symbols relating these sorts;

- **order-sorted** signatures are many-sorted signatures that, in addition, allow inclusion relations between sorts, such as Natural $<$ Integer.
Maude functional modules are equational theories \((\Sigma, E)\), declared with syntax

\[
fmod (\Sigma, E) \text{ endfm}
\]

Such theories can be unsorted, many-sorted, or order-sorted, or even more general membership equational theories (to be discussed later in the course).

In what follows we will see examples of unsorted, many-sorted and order-sorted equational theories \((\Sigma, E)\) expressed as Maude functional modules, and of how one can use such theories as functional programs by computing with the equations \(E\).
*** prefix syntax

fmod NAT-PREFIX is
 sort Natural .
 op 0 : -> Natural [ctor] .
 op s : Natural -> Natural [ctor] .
 op plus : Natural Natural -> Natural .
 vars N M : Natural .
 eq plus(N,0) = N .
 eq plus(N,s(M)) = s(plus(N,M)) .
endfm

Maude> red plus(s(s(0)),s(s(0))) .
reduce in NAT-PREFIX : plus(s(s(0)), s(s(0))) .
rewrites: 3 in -10ms cpu (0ms real) (~ rewrites/second)
result Natural: s(s(s(s(0))))
Maude>
Unsorted Functional Modules (II)

fmod NAT-MIXFIX is
 *** mixfix syntax
 sort Natural.
 op 0 : -> Natural [ctor].
 op s_ : Natural -> Natural [ctor].
 op _+_ : Natural Natural -> Natural.
 op _*_ : Natural Natural -> Natural.
 vars N M : Natural.
 eq N + 0 = N.
 eq N + s M = s(N + M).
 eq N * 0 = 0.
 eq N * s M = N + (N * M).
endfm

Maude> red (s s 0) + (s s 0).
reduce in NAT-MIXFIX : s s 0 + s s 0.
rewrites: 3 in 0ms cpu (0ms real) (~ rewrites/second)
result Natural: s s s s 0
Maude>
fmod NAT-LIST is
 protecting NAT-MIXFIX .
 sort List .
 op nil : -> List [ctor] .
 op length : List -> Natural .
 var N : Natural .
 var L : List .
 eq length(nil) = 0 .
 eq length(N . L) = s length(L) .
endfm

Maude> red length(0 . (s 0 . (s s 0 . (0 . nil))))) .
reduce in NAT-LIST : length(0 . s 0 . s s 0 . 0 . nil) .
rewrites: 5 in 0ms cpu (0ms real) (~ rewrites/second)
result Natural: s s s s 0
Maude>
The full signature Σ of the NAT-LIST example, that imports NAT-MIXFIX, is then,

```
sorts Natural List .
op 0 : -> Natural .
op s_ : Natural -> Natural .
op _+_ : Natural Natural -> Natural .
op _*_ : Natural Natural -> Natural .
op nil : -> List .
op _._ : Natural List -> List .
op length : List -> Natural .
```
Many-Sorted Signatures as Labeled Multigraphs

We can naturally represent a many-sorted signature as a labeled multigraphs whose nodes are the sorts, and whose labeled edges are the operation symbols.

In a normal labeled graph a directed edge links an input node to an output node. Instead, in a multigraph an edge links zero, one, or several input nodes to an output node. So, we view an operator like

\[\text{op}_{__} : \text{Natural List} \rightarrow \text{List} \]

as a labeled edge having two input nodes and one output node (see Picture 2.1). When all operations are unary, signatures are exactly labeled graphs (see Picture 2.2)
An many-sorted signature is a pair $\Sigma = (S, F)$, with:

- S a set whose elements $s, s', s'', \ldots \in S$ are called sorts, and

- F, called the set of function symbols, is an $S^* \times S$-indexed set $F = \{F_{w,s}\}_{(w,s) \in S^* \times S}$, where if $f \in F_{s_1 \ldots s_n, s}$ then we display it as $f : s_1 \ldots s_n \rightarrow s$ and call sequence of sorts $s_1 \ldots s_n \in S^*$ the argument sorts, and $s \in S$ the result sort. When $n = 0$, we call $f \in F_{\text{nil}, s}$, with nil the empty sequence, a constant.
In full detail, the signature Σ in our NAT-LIST example has:
set of sorts $S = \{\text{Natural}, \text{List}\}$, and indexed family F of
sets of function symbols:

$F_{\text{nil, Natural}} = \{0\}$, $F_{\text{nil, List}} = \{\text{nil}\}$, $F_{\text{Natural, Natural}} = \{s\}$,
$F_{\text{Natural, Natural}} = \{-+, \text{-}\ast\}$, $F_{\text{Natural List, List}} = \{-\cdot\}$,
$F_{\text{List, Natural}} = \{\text{length}\}$.

Similarly, the signature Σ in our NAT-PREFIX example has
$S = \{\text{Natural}\}$ an indexed family G of sets of function
symbols:

$G_{\text{nil, Natural}} = \{0\}$, $G_{\text{Natural, Natural}} = \{s\}$, $G_{\text{Natural Natural, Natural}} = \{\text{plus}\}$.

11
Many-sorted signatures are still too restrictive. The problem is that some operations are partial, and there is no natural way of defining them in just a many-sorted framework.

Consider for example defining a function first that takes the first element of a list of natural numbers, or a predecessor function p that assigns to each natural number its predecessor. What can we do? If we define,

\begin{verbatim}
op first : List -> Natural .
op p_ : Natural -> Natural .
\end{verbatim}

we have then the awkward problem of defining the values of first(nil) and of p 0, which in fact are undefined.
A much better solution is to recognize that these functions are partial with the typing just given, but become total on appropriate sorts \(\text{NeList} < \text{List} \) of nonempty lists, and \(\text{NzNatural} < \text{Natural} \) of nonzero natural numbers. If we define,

\[
\begin{align*}
\text{op } s__ & : \text{Natural} \rightarrow \text{NzNatural} . \\
\text{op } __ & : \text{Natural List} \rightarrow \text{NeList} . \\
\text{op } \text{first} & : \text{NeList} \rightarrow \text{Natural} . \\
\text{op } p__ & : \text{NzNatural} \rightarrow \text{Natural} .
\end{align*}
\]

everything is fine. Subsorts also allow us to overload operator symbols. For example, \(\text{Natural} < \text{Integer} \), and

\[
\begin{align*}
\text{op } __ & : \text{Natural Natural} \rightarrow \text{Natural} . \\
\text{op } __ & : \text{Integer Integer} \rightarrow \text{Integer} .
\end{align*}
\]
fmod NATURAL is
 sorts Natural NzNatural .
 subsorts NzNatural < Natural .
 op 0 : -> Natural [ctor] .
 op s_ : Natural -> NzNatural [ctor] .
 op p_ : NzNatural -> Natural .
 op _+_ : Natural Natural -> Natural .
 op _+_ : NzNatural NzNatural -> NzNatural .
 vars N M : Natural .
 eq p s N = N .
 eq N + 0 = N .
 eq N + s M = s(N + M) .
endfm

Maude> red p((s s 0) + (s s 0)) .
reduce in NATURAL : p (s s 0 + s s 0) .
rewrites: 4 in 0ms cpu (0ms real) (~ rewrites/second)
result NzNatural: s s s 0
fmod NAT-LIST-II is
 protecting NATURAL .
sorts NeList List .
subsorts NeList < List .
op nil : -> List [ctor] .
op length : List -> Natural .
op first : NeList -> Natural .
op rest : NeList -> List .
var N : Natural .
var L : List .
eq length(nil) = 0 .
eq length(N . L) = s length(L) .
eq first(N . L) = N .
eq rest(N . L) = L .
endfm
An order-sorted signature Σ is a pair $\Sigma = ((S, <), F)$ where (S, F) is a many-sorted signature, and where $<$ is a partial order relation on the set S of sorts called subsort inclusion.

That is, $<$ is a binary relation on S that is:

- *irreflexive*: $\neg(x < x)$
- *transitive*: $x < y$ and $y < z$ imply $x < z$

Any such relation $<$ has an associated \leq relation that is reflexive, antisymmetric, and transitive. We will move back and forth between $<$ and \leq (see STACS 7.4).

Note: Unless specified otherwise, by a signature we will always mean an order-sorted signature.
Given a signature \(\Sigma \), we can define an equivalence relation (see \textit{STACS 7.6}) \(\equiv \leq \) between sorts \(s, s' \in S \) as the smallest relation such that:

- if \(s \leq s' \) or \(s' \leq s \) then \(s \equiv \leq s' \)

- if \(s \equiv \leq s' \) and \(s' \equiv \leq s'' \) then \(s \equiv \leq s'' \)

We call the equivalence classes modulo \(\equiv \leq \) the connected components of the poset order \((S, \leq)\). Intuitively, when we view the poset as a directed acyclic graph, they are the connected components of the graph (see \textit{STACS 7.6, Exercise 68}).
$\equiv \leq = \{\{\text{NzNatural, Natural, NzInteger, Integer}\}, \{\text{Nelist, List}\}, \{\text{Bool, Prop}\}\}$
In general, the same operator name may have different declarations in the same signature \(\Sigma \). For example, in the NATURAL module we have,

\[
\begin{align*}
\text{op } _+_ : \text{Natural}\ \text{Natural} & \rightarrow \text{Natural} . \\
\text{op } _+_ : \text{NzNatural}\ \text{NzNatural} & \rightarrow \text{NzNatural} .
\end{align*}
\]

When we have two operator declarations, \(f : w \rightarrow s \), and \(f : w' \rightarrow s' \), with \(w \) and \(w' \) strings of equal length, then: (1) if \(w \equiv_{\leq} w' \) and \(s \equiv_{\leq} s' \), we call them \textit{subsort overloaded}; (2) otherwise, e.g, \(_+_ \) for Natural and for exclusive or in \textit{Bool}, we call them \textit{ad-hoc overloaded}.
Since an order-sorted signature is a many-sorted signature whose set of nodes is a poset, we can describe them graphically as labeled multigraphs whose set of nodes is a poset.

We can picture subsort inclusions as usual for partial orders, and operators, as before, as labeled edges in the multigraph. For example, the order-sorted signature of the module NAT-LIST-II is depicted this way in Picture 2.3.
Ex. 2.1. Define in Maude the following functions on the naturals:

- $>$ and \geq as Boolean-valued binary functions importing the built-in module BOOL with single sort Bool.

- `max` and `min`, that yield the maximum, resp. minimum, of two numbers,

- `even` and `odd` as Boolean-valued functions on the naturals,

- `factorial`, the factorial function.
Ex. 2.1. Define in Maude the following functions on list of natural numbers:

- **append** and **reverse**, which appends two lists, resp. reverses the list,

- **max** and **min** that computes the biggest (resp. smallest) number in the list,

- **get.even**, which extracts the lists of even numbers of a list,

- **odd.even**, which, given a lists, produces a pair of list: the first the sublist of its odd numbers and the second the sublist of its even numbers.