Theories in equational logic are called equational theories. In Computer Science they are sometimes referred to as algebraic specifications.

An equational theory is a pair \((\Sigma, E)\), where:

- \(\Sigma\), called the **signature**, describes the **syntax** of the theory, that is, what **types** of data and what **operation symbols** (function symbols) are involved;

- \(E\) is a set of **equations** between expressions (called **terms**) in the syntax of \(\Sigma\).
Our syntax Σ can be more or less expressive, depending on how many types (called sorts) of data it allows, and what relationships between types it supports:

- **unsorted** (or single-sorted) signatures have only one sort, and operation symbols on it;

- **many-sorted** signatures allow different sorts, such as Integer, Bool, List, etc., and operation symbols relating these sorts;

- **order-sorted** signatures are many-sorted signatures that, in addition, allow inclusion relations between sorts, such as $\text{Natural} < \text{Integer}$.
Maude functional modules are equational theories \((\Sigma, E)\), declared with syntax

\[
\text{fmod } (\Sigma, E) \text{ endfm}
\]

Such theories can be unsorted, many-sorted, or order-sorted, or even more general membership equational theories (to be discussed later in the course).

In what follows we will see examples of unsorted, many-sorted and order-sorted equational theories \((\Sigma, E)\) expressed as Maude functional modules, and of how one can use such theories as functional programs by computing with the equations \(E\).
Unsorted Functional Modules

*** prefix syntax

fmod NAT-PREFIX is
 sort Natural .
 op 0 : -> Natural [ctor] .
 op s : Natural -> Natural [ctor] .
 op plus : Natural Natural -> Natural .
 vars N M : Natural .
 eq plus(N,0) = N .
 eq plus(N,s(M)) = s(plus(N,M)) .
endfm

Maude> red plus(s(s(0)),s(s(0))) .
reduce in NAT-PREFIX : plus(s(s(0)), s(s(0))) .
rewrites: 3 in -10ms cpu (0ms real) (~ rewrites/second)
result Natural: s(s(s(s(0))))
Maude>
Unsorted Functional Modules (II)

fmod NAT-MIXFIX is

 *** mixfix syntax
sort Natural .
op 0 : -> Natural [ctor] .
op s_ : Natural -> Natural [ctor] .
op _+_ : Natural Natural -> Natural .
op _*_ : Natural Natural -> Natural .
vars N M : Natural .
eq N + 0 = N .
eq N + s M = s(N + M) .
eq N * 0 = 0 .
eq N * s M = N + (N * M) .
endfm

Maude> red (s s 0) + (s s 0) .
reduce in NAT-MIXFIX : s s 0 + s s 0 .
rewrites: 3 in 0ms cpu (0ms real) (~ rewrites/second)
result Natural: s s s s 0
Maude>
Many-Sorted Functional Modules

fmod NAT-LIST is
 protecting NAT-MIXFIX .
 sort List .
 op nil : -> List [ctor] .
 op length : List -> Natural .
 var N : Natural .
 var L : List .
 eq length(nil) = 0 .
 eq length(N . L) = s length(L) .
endfm

Maude> red length(0 . (s 0 . (s s 0 . (0 . nil)))) .
reduce in NAT-LIST : length(0 . s 0 . s s 0 . 0 . nil) .
rewrites: 5 in 0ms cpu (0ms real) (~ rewrites/second)
result Natural: s s s s 0
Maude>
The full signature Σ of the NAT-LIST example, that imports NAT-MIXFIX, is then,

```
sorts Natural List .
op 0 : -> Natural .
op s_ : Natural -> Natural .
op _+_: Natural Natural -> Natural .
op _*_: Natural Natural -> Natural .
op nil : -> List .
op _._ : Natural List -> List .
op length : List -> Natural .
```
We can naturally represent a many-sorted signature as a labeled multigraphs whose nodes are the sorts, and whose labeled edges are the operation symbols.

In a normal labeled graph a directed edge links an input node to an output node. Instead, in a multigraph an edge links zero, one, or several input nodes to an output node. So, we view an operator like

\[
\text{op } _ . _ : \text{Natural List} \to \text{List .}
\]

as a labeled edge having two input nodes and one output node (see Picture 2.1). When all operations are unary, signatures are exactly labeled graphs (see Picture 2.2)
An **many-sorted signature** is a pair $\Sigma = (S, F)$, with:

- S a set whose elements $s, s', s'', \ldots \in S$ are called **sorts**, and

- F, called the set of **function symbols**, is an $S^* \times S$-indexed set $F = \{F_w, \}_{(w,s) \in S^* \times S}$, where if $f \in F_{s_1 \ldots s_n, s}$ then we display it as $f : s_1 \ldots s_n \rightarrow s$ and call sequence of sorts $s_1 \ldots s_n \in S^*$ the **argument sorts**, and $s \in S$ the **result sort**. When $n = 0$, we call $f \in F_{\text{nil}, s}$, with nil the empty sequence, a **constant**.
In full detail, the signature Σ in our NAT-LIST example has:
set of sorts $S = \{\text{Natural}, \text{List}\}$, and indexed family F of sets of function symbols:

\[
F_{\text{nil}, \text{Natural}} = \{0\}, \quad F_{\text{nil}, \text{List}} = \{\text{nil}\}, \quad F_{\text{Natural}, \text{Natural}} = \{s\}, \quad F_{\text{Natural, Natural, Natural}} = \{-+, -\ast\}, \quad F_{\text{Natural List, List}} = \{-\ldots\}, \quad F_{\text{List, Natural}} = \{\text{length}\}.
\]

Similarly, the signature Σ in our NAT-PREFIX example has
set of sorts $S = \{\text{Natural}\}$ an indexed family G of sets of function symbols:

\[
G_{\text{nil, Natural}} = \{0\}, \quad G_{\text{Natural, Natural}} = \{s\}, \quad G_{\text{Natural Natural, Natural}} = \{\text{plus}\}.
\]
The Need for Order-Sorted Signatures

Many-sorted signatures are still too restrictive. The problem is that some operations are partial, and there is no natural way of defining them in just a many-sorted framework.

Consider for example defining a function \texttt{first} that takes the first element of a list of natural numbers, or a predecessor function \texttt{p} that assigns to each natural number its predecessor. What can we do? If we define,

\begin{verbatim}
 op first : List -> Natural .
 op p_ : Natural -> Natural .
\end{verbatim}

we have then the awkward problem of defining the values of \texttt{first(nil)} and of \texttt{p 0}, which in fact are undefined.
The Need for Order-Sorted Signatures (II)

A much better solution is to recognize that these functions are partial with the typing just given, but become total on appropriate subsorts NeList < List of nonempty lists, and NzNatural < Natural of nonzero natural numbers. If we define,

\[
\begin{align*}
\text{op } __ : \text{Natural } \rightarrow \text{NzNatural} \\
\text{op } ___ : \text{Natural List } \rightarrow \text{NeList} \\
\text{op } \text{first} : \text{NeList } \rightarrow \text{Natural} \\
\text{op } p__ : \text{NzNatural } \rightarrow \text{Natural}
\end{align*}
\]

everything is fine. Subsorts also allow us to overload operator symbols. For example, Natural < Integer, and

\[
\begin{align*}
\text{op } _\+__ : \text{Natural Natural } \rightarrow \text{Natural} \\
\text{op } _\+__ : \text{Integer Integer } \rightarrow \text{Integer}
\end{align*}
\]
fmod NATURAL is
 sorts Natural NzNatural .
 subsorts NzNatural < Natural .
 op 0 : -> Natural [ctor] .
 op s_ : Natural -> NzNatural [ctor] .
 op p_ : NzNatural -> Natural .
 op _+_ : Natural Natural -> Natural .
 op _+_ : NzNatural NzNatural -> NzNatural .
 vars N M : Natural .
 eq p s N = N .
 eq N + 0 = N .
 eq N + s M = s(N + M) .
endfm

Maude> red p((s s 0) + (s s 0)) .
reduce in NATURAL : p (s s 0 + s s 0) .
rewrites: 4 in 0ms cpu (0ms real) (~ rewrites/second)
result NzNatural: s s s 0
Order-Sorted Functional Modules (II)

fmod NAT-LIST-II is
 protecting NATURAL .
 sorts NeList List .
 subsorts NeList < List .
 op nil : -> List [ctor] .
 op length : List -> Natural .
 op first : NeList -> Natural .
 op rest : NeList -> List .
 var N : Natural .
 var L : List .
 eq length(nil) = 0 .
 eq length(N . L) = s length(L) .
 eq first(N . L) = N .
 eq rest(N . L) = L .
endfm
An order-sorted signature Σ is a pair $\Sigma = ((S, <), F)$ where (S, F) is a many-sorted signature, and where $<$ is a partial order relation on the set S of sorts called subsort inclusion.

That is, $<$ is a binary relation on S that is:

- **irreflexive**: $\neg(x < x)$
- **transitive**: $x < y$ and $y < z$ imply $x < z$

Any such relation $<$ has an associated \leq relation that is reflexive, antisymmetric, and transitive. We will move back and forth between $<$ and \leq (see STACS 7.4).

Note: Unless specified otherwise, by a signature we will always mean an order-sorted signature.
Given a signature Σ, we can define an equivalence relation (see *STACS 7.6*) \equiv_\leq between sorts $s, s' \in S$ as the smallest relation such that:

- if $s \leq s'$ or $s' \leq s$ then $s \equiv_\leq s'$
- if $s \equiv_\leq s'$ and $s' \equiv_\leq s''$ then $s \equiv_\leq s''$

We call the equivalence classes modulo \equiv_\leq the connected components of the poset order (S, \leq). Intuitively, when we view the poset as a directed acyclic graph, they are the connected components of the graph (see *STACS 7.6, Exercise 68*).
Connected Components Example

\[
\begin{align*}
\text{NzNatural} & \quad \text{Natural} \\
\text{NzNatural} & \quad \text{Integer} \\
\text{List} & \quad \text{Prop} \\
\text{Nelist} & \\
\text{Bool} & \\
\end{align*}
\]

\[
S/ \equiv \leq = \{\{\text{NzNatural}, \text{Natural}, \text{NzInteger}, \text{Integer}\}, \{\text{Nelist}, \text{List}\}, \{\text{Bool}, \text{Prop}\}\}
\]
Subsort vs. Ad-hoc Overloading

In general, the same operator name may have different declarations in the same signature Σ. For example, in the NATURAL module we have,

$$\text{op } _+\text{ : Natural Natural } \rightarrow \text{ Natural .}$$
$$\text{op } _+\text{ : NzNatural NzNatural } \rightarrow \text{ NzNatural .}$$

When we have two operator declarations, $f : w \rightarrow s$, and $f : w' \rightarrow s'$, with w and w' strings of equal length, then: (1) if $w \equiv \leq w'$ and $s \equiv \leq s'$, we call them 	extit{subsort overloaded}; (2) otherwise, e.g, $+_\text{ for Natural and for exclusive or in Bool,}$ we call them 	extit{ad-hoc overloaded}.

19
Since an order-sorted signature is a many-sorted signature whose set of nodes is a poset, we can describe them graphically as labeled multigraphs whose set of nodes is a poset.

We can picture subsort inclusions as usual for partial orders, and operators, as before, as labeled edges in the multigraph. For example, the order-sorted signature of the module NAT-LIST-II is depicted this way in Picture 2.3.
Ex. 2.1. Define in Maude the following functions on the naturals:

- \(> \) and \(\geq \) as Boolean-valued binary functions importing the built-in module \(\text{BOOL} \) with single sort \(\text{Bool} \).

- \text{max} and \text{min}, that yield the maximum, resp. minimum, of two numbers,

- \text{even} and \text{odd} as Boolean-valued functions on the naturals,

- \text{factorial}, the factorial function.
Ex. 2.2. Define in Maude the following functions on list of natural numbers:

- **append** and **reverse**, which appends two lists, resp. reverses the list,

- **max** and **min** that computes the biggest (resp. smallest) number in the list,

- **get.even**, which extracts the lists of even numbers of a list,

- **odd.even**, which, given a lists, produces a pair of list: the first the sublist of its odd numbers and the second the sublist of its even numbers.