Monadic Second order logic on trees

(nary ordered) Tree domain T is a sambar of $\{0,1,2 \ldots n-1\}^{\infty}$ that $i 0$

- prefix closed.
$-\forall n \in\{0, \ldots n-r\}^{*}, i, j \in\{0, \ldots n-r\}$ and $i<j$ if $u j \in T$ then $u i \in T$.
\sum-labeled n-ary trio are $T=\left(\right.$ dom $\left._{t}, \operatorname{lob} b_{t}\right)$ such that dom et is a tree domain and lab $_{t}:$ dom $_{t} \rightarrow \mathcal{E}$ is a labeling function Tree Automaton $\mathcal{A}=(Q, \Sigma, \delta, F)$

$$
\begin{aligned}
& -\delta=\hat{\bigcup}_{i=0}^{n} \delta_{i} \\
& \delta_{i}: Q^{i} \times \Sigma \rightarrow 2^{Q}
\end{aligned}
$$

Press labeled brio starting at the leaf and going up the true until it reaches the root.
An input tree t is accepted if x has a rum where the root is labeled by a final state.
Tree legator Languages A set of Σ-labeled (n-ary) trio such that the pet is recognized by some tree antomator.

Properties of The Regular Languages

- Deterministic The antomatar as powerful as a nondetermimatic tree automaton.
- Tree regular longnages are closed under union, intersection and complementation.
- Othre classical elourse properties of word regular languages extend to tree Cangnages.
- These are non-regular tree langerages.

$$
L=\left\{A\left(t_{1}, t_{2}\right) / t_{1}=t_{2}\right\}
$$

Thee with root labeled A and hers 2 children which are trees t_{1} and t_{2}

of root are isomorphic.
L is not a regulars true Langrage.
Proof Suppose $L_{\text {is }}$ recognized by a tree trminotic automaton Barth k states.
There nuns be true $t_{1} \neq t_{2}$ such that in the sun of B on t_{1} and t_{2} the estate labeling the Root is the same.
$A\left(t_{1}, t_{1}\right) \in L\left(\right.$ and $\left.\pi\left(v_{2}, i_{2}\right) \cdots\right)$ bat $A\left(t_{1}, t_{2}\right) \notin L$.
The run of B an $A\left(t_{1}, t_{1}\right)$ and $A\left(t_{1}, t_{2}\right)$ will be in the same state at the Root.
Proposition Given a tree automaton A the problem of deterring if $L(\mathcal{L})=\varnothing$ and the problem of deterring if $L(A)$ is "unvirsal" are decidable.

If x io determinatic decidable in linear time.

S-lobeled Trees as tinctures
Signature $\left.C<, \mathcal{S}_{0}, S_{1} \ldots S_{n+1},\left\{Q_{a}\right\}_{a \in \mathcal{E}}\right)$ anceotor/selation
parent. child
relation
${ }^{\text {Labels on }}$ nodes
Tree as a slinchchre $t=\left(\right.$ don $_{t}$, lab $\left._{t}\right)$ is a structure $Y=\left(T,<^{\top}, S_{i}^{\top}, Q_{a}^{\top}\right)_{x}$

$$
-T=\operatorname{dom}_{t}
$$

$-(n, v) \in<^{T}$ if u is a strict prefix of v

$$
\begin{aligned}
& -Q_{a}=\left\{u \in T \mid l a b_{t}(a)=a\right\} \\
& T=\{\epsilon, 0,1,10,100,10 r\} \\
& \left.L^{T}=\{\epsilon, 0),(\epsilon, 1),(\epsilon, 10) \ldots\right\} \\
& S_{0}=\{(\epsilon, 0),(1,10),(10,100)\} \\
& S_{1}=\{(\epsilon, 1),(10,101)\} \\
& Q_{\Lambda}=\{\epsilon, 10\}, Q_{7}=\{1\} \ldots
\end{aligned}
$$

Monadic Second Order Logic on Trees.
Second order logic formulas over the signature $\left(<, S_{0} \ldots S_{n-1},\left\{Q_{a}\right\}_{a \in E}\right)$. such-that all relational variables have parity 1.
Terms: $t:=x$ - variables.
Formulas $\varphi::=t_{1}=t_{2}\left|<\left(t_{1}, t_{2}\right)\right| S_{i}\left(t_{1}, t_{2}\right)$ $Q_{a} t \mid X t$
$\tau \varphi \mid \varphi \vee \varphi$ Relational walkable

$$
\begin{aligned}
& J \mid \varphi \vee \varphi \rightarrow 0 \\
& J x \cdot \varphi \mid \exists X \varphi
\end{aligned}
$$

For a sentence φ
$\llbracket \varphi]=\{T$ a tree $\mid T \neq \varphi\}$.
Trees defined by φ.

Dover, Thatcher-Wright A tree language L is regular iff it is definable in MSO 1.e \ni MSO sentence φ sit

$$
L=[\angle \varphi]
$$

Proof \Leftrightarrow Let L that is recognized by tree aulomotion $\mathcal{A}=(\{0, \ldots k-1\}, \Sigma, \delta, F)$.
Sentence defing L is going say that the automation ∞ has an aceefitiy sun on input tree.
Rum is a true labeled by $\{0, \ldots k-1\}$

- For each átale ${ }^{P}$ we will identify the vertices that have label p in the acceptiy sunn.

$$
\begin{aligned}
& \varphi_{A}=\exists X_{0} \exists X_{1} \cdots \exists X_{k-1} \text { accopig, sum } \\
& \forall x\left(\bigvee_{i=0}^{k-1} X_{i}^{\prime} x \wedge \wedge_{i \neq j}\left(X_{i} x \wedge X_{j} x\right)\right)
\end{aligned}
$$

every vertex has a wingue state label.

$$
\Lambda \forall x\left(\operatorname{root}(x) \rightarrow \bigvee_{i \in F} X_{i} x\right)
$$

root is labeled by a final state.

$$
\begin{aligned}
& \longrightarrow \operatorname{root}(x)=\forall y \bigcap_{i=0}^{M} \rightarrow S_{i}(y, x) \\
& \Omega \bigwedge_{i=0}^{n-1} \forall_{x} \forall_{y_{0}} \ldots y_{i-1} \\
& \text { chidrean }_{i}\left(x, y_{0} \ldots y_{i-1}\right) \rightarrow \\
& \underset{\left.p \in \delta\left(p_{0} \ldots P_{i-1},\right)^{a}\right)}{\bigvee\left(Q_{a}(x) \wedge \bigwedge_{j=0}^{i-1} X_{p_{j}} y_{j} \wedge X_{p} x\right)}
\end{aligned}
$$

Labelij of verticies by etatio is conisiblent wich the transichin for.
defined.
This a formala of the form $\exists x$ 甘y φ.

