Tree Regular Languages

Classical Formal Languages Computational device gets a string as input.
Strings represent

$$
x \wedge>(y \wedge z)
$$

Vertices have Labels Labeled

Special root

Every vertex
$\leqslant n$ children
a Rooted, ordered, n-arg bur.
Children of a vertex
ordered from left to right

Rooted trews: Every vertex has a unique path from a root.
Labeled Rooted ordered n-ary tries are $t=\left(\operatorname{dom}_{t}, \operatorname{lob} t\right)$

$$
-\operatorname{dom}_{t} \subseteq\{0, \ldots n-1\}^{*}
$$

finite stingo avar $\{0, \ldots n-r\}$
such that dom io prefiry closed if u is prefix of v and $v \in$ dom $_{t}$ them $a \in$ done $_{t}$.
and $\forall u \in\{0, \ldots n-1\}^{*}$ and $j, i \in\{0, \ldots n-1\}$ s.t $j<i, u i \in \operatorname{dom}_{t} \Rightarrow u j \in \operatorname{dom}_{t}$

- $\operatorname{lob}_{t}:$ dom $_{t} \rightarrow \sum$ where \sum is the set of Cobelo.

Notation $T_{n}(\Sigma)$ - set of Σ-labeled, rooted, n-ar true.
Finite antomata on Trees.
Weirdos
DEA

$$
\begin{aligned}
& a-b-c-d \ldots-2 \\
& \downarrow \downarrow q_{1} q_{1} \downarrow_{2} \ldots . . \\
& q_{1} \rightarrow q_{3}
\end{aligned}
$$

Determinotic
λ Tree automaton (on n-are trio)

$$
A=(Q, \Sigma, \delta, F)
$$

$-Q$ is a finite set of states

- \sum is labels on the tree inputs
- $F \subseteq Q_{n}$ is a set of final states

$$
-\delta=\bigcup_{i=n}^{n} \delta_{i}
$$

$$
\delta_{i}: Q^{i} \times \mathcal{S} \rightarrow Q
$$

Run of \mathcal{A} on tree $t=$ (donn $_{t}$, la $_{t}$) is another Q-labeled $\rho=\left(\right.$ dom $_{p}$, lob $\left.e\right)$ where

$$
{ }^{2}-\operatorname{dom}_{e}=\operatorname{dom}_{t} \text {. }
$$

- $\forall u \in \operatorname{dom}_{b}$ s.t u has i-children

$$
\begin{aligned}
\operatorname{lab}_{e}(u)=\delta_{i} & \left(\operatorname{loa}_{p}(n 0), \ldots\right. \\
& \left.\operatorname{lob}_{p}(u(i-1)), \operatorname{lob}_{t}(u)\right)
\end{aligned}
$$

Example $\quad D=\left(\left\{q_{0}, q_{1}, r\right\},\{0,1,1, v, \wedge\}\right.$,

$$
\begin{aligned}
& \delta_{0}(0)=q_{0} \quad \delta_{0}(1)=q_{1} \\
& \delta_{1}\left(q_{i}, r\right)=q_{1-i} \\
& \delta_{2}\left(p_{1}, p_{2}, \wedge\right)=\left\{\begin{array}{lll}
q_{1} & \text { y } p_{1}=p_{2}=q_{1} \\
q_{0} & 0 . w .
\end{array}\right. \\
& \delta_{2}\left(p_{1}, p_{2}, v\right)= \begin{cases}q_{0} & \text { o } p_{1}=p_{2}=q_{0} \\
q_{1} & 0 . w\end{cases}
\end{aligned}
$$

In all other cases, δ retiorno r.

Input

\wedge	r
1	1
0	q_{0}
Caput	Run

On any infest tree, a determuiotic tree automaton has a unique sun.
Acceptance t is accepted by \mathcal{A} if the sun of A on t is ench that the label of the root is a finial state. $L(\infty)=\{t \mid \infty$ acceptor $t\}$.
Definition A set (of Σ-labeled n-vary trio is regular if there is a tree automaton A such that $L(A)=K$.

Proposition Regular tree Languages are closed undure complementation, intersection, and union
Nondetermunstic Tree Automates

$$
\mathcal{A}=(Q, \Sigma, \delta, F)
$$

where $\delta_{i}: Q^{i} \times \Sigma \rightarrow 2^{Q}$
$1 R \ldots$ nl A on input $t=\left(\right.$ dom $\left._{\perp}, l_{a b}^{t}\right)$ is

Q- labeled true $e=\left(\right.$ dome $_{p}$, lab $\left.b_{e}\right)$

- dom $_{e}=$ dom $_{t}$
- $\forall u$ orth i-children

$$
\operatorname{lob}_{p}(u) \in \delta_{i}\left(l_{a} b_{p}(u 0) \ldots l \operatorname{la} b_{p}(u(i-1)), \operatorname{lob}_{t}(u)\right)
$$

Theorem If K is a true langrage recogoinged by a non-deterimuniotic tree Aulomatón then K is regular.
Proof Standard subset construction.
Proposition Any set of finite trews is regular.
Example A context-free grammar

$$
\begin{array}{ll}
G=(N, T, S, R) & \text { Rules } \\
\text { nonterimindes tephinals } & x \rightarrow \alpha \\
& \text { start syn }
\end{array} \quad x \in N, \alpha \in(N \cup T)^{\lambda} .
$$

Parse trees of a gramnaare io regular.

$$
\begin{aligned}
& \mathscr{N}=(N \cup T \cup\{*\}, N \cup T, \delta,\{s\}) \\
& \delta_{0}(a)=a \text { if } a \in T . \\
& \delta_{i}\left(q_{1}, q_{i}, A\right)=A
\end{aligned}
$$

if $A \in N$
and $A \rightarrow q_{1} \ldots q_{i} \in R$.
In all other cases, δ returns*.

