Descriptive Complexity II

Logic capturing complexity class. Logic L is paid to capture complexity class c if
(a) $\forall \varphi \in L$ over signature τ, the problem of determing if $\mathcal{X} \neq \varphi$ for a given τ - structure A is in C
(b) For any signature τ and any collection of τ-structures K that is closed under is amorphism,
$\forall A, B, A \cong B \Rightarrow A \in K \leftrightarrow B \in K$ encode' $(K)=\{\operatorname{encode}(A, L)(A \in K\}$ and $K \in \mathbb{C}$, the is a τ-sentence $\varphi \in L$ such That

$$
K=\{\infty / \infty \vDash \varphi\} \text {. }
$$

Exiotential Second Order Logic Second order Logic formulas of the form $\exists x_{1} \exists x_{2} \ldots J x_{m} \psi$
where ψ is a first order logic formula.
Fagin's Theorem Existential second order logic captures NP.

Prof Complexity of the problem of checking finite $\mathcal{A} \in \varphi, \varphi \in E \times$ So.

$$
\begin{aligned}
& \varphi=\exists x_{1} \exists x_{2} \ldots \exists x_{m} \psi \\
& w L O G \quad(u(A) \mid=n .
\end{aligned}
$$

- Guess relational interpretations for $x_{1}, x_{2} \ldots x_{m} \rightarrow$ pelytime
- Check if ψ holds (A, x_{1}, x_{m}) fo.
S If max arity $x_{\ldots} x_{m}$ is k thu guess $m\left(n^{k}\right)>$ corotonts.
Algo $\in N P$.
Second direction: To show every problem in NP can be defined in ExSo.

$$
B \in N P
$$

B is recognized M.
Corollary Universal so captures con No

$$
\begin{gathered}
\forall x_{1} \forall x_{2}, \forall x_{m} \psi \\
F O \cdot \\
C O N P=\{B \mid \bar{B} \in N P\} .
\end{gathered}
$$

1.11 + : th. solative expressive bower

UV hat wo
of existential so and anwernal so?

- Equivalent $N P \stackrel{?}{=}$ co $N P$.

How dos the expreasive power full so compare to NP?

- Unreoolved.
- Corollary Fagin's Theorem SO captures Polynound Time H ieraechy.
Spectrum $S \subseteq \mathbb{N}$ is a spectrum if there is a signature τ and τ-sentence φ such that

$$
S=\{|\mathcal{A}| \mid A \neq \varphi\}
$$

Schottz's Question So the complement of a epectrion also a spectrum?
spectra $(\tau \varphi) \neq \underset{\operatorname{spectrum}(\varphi)}{ }$
Correspondence between spectra rand modes of ExSO.
Consider Fo φ over τ. WLOG τ has constants and relations

$$
\tau=\left(c_{1} \ldots c_{m}, R_{1} \ldots R_{l}\right)
$$

spectrum $(\varphi)=$
$\operatorname{Modelo}\left(\exists R_{1} \ldots \exists R_{l} \exists c_{1} \ldots \forall c_{m} \varphi\right)$
ϵ_{x} So sentence over $\}$.
Spectrum $=$ Models of $E \times$ So over $\}$.
If S is a spectrum \Rightarrow
ExSo $\varphi \Rightarrow S \in$ NEXT
$S \in N E X P \Rightarrow$ Spectrum of $\varphi=S$.
Jones-Selman Theorem S is spectrum if $S \in N E X P$.
Scholtz's Question is equivalent

$$
N E X P=C O N E X P
$$

Logical Characterization of Polynomial Tine.
First order logic is too weak

- Evenness is not expressible.

Ordered Signature $<\in \tau$.
Ordered Structure a structure X over an ordered signature such that
$<$ is a unbar occur.
L captures C over ordered structures

- $\because \varphi$ over an ordered Regnature the problem $\mathcal{A} \neq \varphi \in K$.
- \forall any ordered signature τ and collection of τ-structures α closed under ismorphison and $k \in C$, ϕ is definable in L.
Connecturity over ordered graphs in loot Fo - expressible.
Definition Let $\psi(R, \bar{x})$ where R is s-ary relation and $\bar{x}=\left\{x_{1} \ldots x_{s}\right\}$ and ψ is $\tau \cup\{R\}$-formant.
For any τ-structure A, ψ define
$F_{\psi}: 2^{\left(u(A)^{s}\right)} \rightarrow 2^{u(x)^{s}}$

$$
F_{\psi} F_{\psi u(\mathcal{L}}(T)=\{\bar{a} \mid \mathcal{A} \neq \psi[R \mapsto T, \bar{x} \mapsto \bar{a}]\}
$$

$$
\text { Example } \quad \tau=\{\in\}
$$

$$
\psi(R, x, y)=E(x, y) \vee(\exists z R(x, z) \wedge E(z, y))
$$

$$
\begin{aligned}
f_{\psi}(\varphi)= & 2(1,2),(4,0), 12,4,5 \\
= & \epsilon \\
F_{\psi}(E)=\{ & (1,2),(2,3),(3,4), \\
& (1,3),(2,4)\}
\end{aligned}
$$

Fixed Pout Suppose $f_{\psi}: 2^{u(x))^{s}} \rightarrow 2^{a(\alpha a)^{s}}$
$T \subseteq u(x)^{s}$ is a fixpoint of F_{ψ} if

$$
\begin{aligned}
& F_{\psi}(T)=T \\
& \longrightarrow F_{\psi}(\{1,2,3,4\} \times\{1,2,3,4\}) \\
&=\{1,2,3,4\} \times\{1,2,3,4\} \\
& F_{\psi}(\{(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)\}) \\
&=\{(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)\}
\end{aligned}
$$

Least fixpoint $F_{\varphi}: 2^{\mu^{(x) s}} \rightarrow 2^{n(\Delta n)^{s}}$
T is LFP if T is fixpoit and for any other fexport R, we have

$$
T \subseteq R
$$

Tarski-Knaater Theorem If $\psi(R, \bar{x})$ $\tau \cup\{R \xi$ formula such that all atomic subformulas involving R are under an even number of negations, then F_{ψ} has a least fixed point.

First Order Logic with LFP.

- If $\psi(R, \bar{x})$ is a formula such that R appears under an even number of negations. Then

LIP $R \bar{x} \psi(\bar{y})$ is a formula.
Meaning $\mathcal{D F}^{\prime}$ LFPR $\bar{x} \psi(\bar{y})[\dot{y} \mapsto \bar{a}]$ if $\bar{a} \in$ Least fixpoint of F_{ψ} Imonerman Vardi Theorem Over ordered structures $F o+L F P$ captures P.

