Logic capturing complexity class.

Logic L is said to capture complexity class C if

(a) $\forall \varphi \in L$ over signature Σ, the problem of determining if $A \models \varphi$ for a given Σ-structure A is in C.

(b) For any signature Σ and any collection of Σ-structures K that is closed under isomorphism, $\forall A, B, A \cong B \Rightarrow A \in K \iff B \in K$, encode $(K) = \{\text{encode}(A, \preceq) : (A, \preceq) \in K\}$, there is a Σ-sentence $\varphi \in L$ such that

$$K = \{A : A \models \varphi\}.$$

Existential Second Order Logic

Second order logic formulas of the form

$$\exists x_1 \exists x_2 \ldots \exists x_m \varphi$$

where φ is a first order logic formula.

Fagin's Theorem Existental second order logic captures NP.
Proof: Complexity of the problem of checking finite $A \not\models \varphi$, $\varphi \in \text{ExSo}$.

$\varphi = \exists X_1 \exists X_2 \ldots \exists X_m \psi$

WLOG $(u(A)) = n$.

- Guess relational interpretations for $X_1, X_2 \ldots X_m$. \rightarrow poly time

- Check if ψ holds $(A, X_1 \ldots X_m)$ for.

If max arity $X_1 \ldots X_m$ is k then guess $m(n^k)$ is constant.

Algorithm $\in \text{NP}$.

Second direction: To show every problem in NP can be defined in ExSo.

$B \in \text{NP}$

B is recognized M.

Corollary: Universal SO captures coNP

$\forall X_1 \forall X_2 \ldots \forall X_m \psi$

$\not\models \text{Fo.}$

$\text{coNP} = \sum B \mid \overline{B} \in \text{NP}$.

\therefore \therefore the relative expressive power
What is the relation of existential \exists_0 and universal \forall_0?

- Equivalent $\text{NP} \equiv \text{coNP}$.

How does the expressive power fall \exists_0 compare to NP?

- Unresolved.

- Corollary: Fagin’s theorem \exists_0 captures Polynomial Time Hierarchy.

Spectrum $S \subseteq \mathbb{N}$ is a spectrum if there is a signature Σ and Σ-sentence ψ such that

$$S = \{ \bar{a} | \forall \bar{b} \in A \not\models \psi \}.$$

Schötz’s Question Is the complement of a spectrum also a spectrum?

Spectrum $C(\neg \phi) \neq \text{specturm}(\phi)$

Correspondence between spectra and models of $\text{E}x\text{SO}$. Consider FO ϕ over Σ.

WLOG Σ has constants and relations

$$\Sigma = \{ c_1, \ldots, c_m, R_1, \ldots, R_k \}.$$
Spectrum (\mathcal{S}) =

Models ($\forall R_1 \ldots \forall R_e \exists c_1 \ldots \exists c_m \varphi$)

$\exists \sigma$ so sentence over \mathcal{S}.

Spectrum = Models of $\exists \sigma$ so over \mathcal{S}.

If S is a spectrum \Rightarrow

$\forall \sigma \exists \sigma \sigma \varphi \Rightarrow S \in \text{NEXP}$

$S \in \text{NEXP} \Rightarrow$ Spectrum of φ. = S.

Jones-Selman Theorem S is spectrum if $S \in \text{NEXP}$.

Scholtz's Question is equivalent

NEXP = co NEXP

Logical Characterization of Polynomial Time:

First order logic is too weak

- Evenness is not expressible.

Ordered Signature $\langle e \rangle$

Ordered Structure a structure \mathcal{A} over an ordered signature such that
L is a unary logic.

L captures C over ordered structures

- If φ over an ordered signature
 the problem $A \models \varphi \in C$.
- If any ordered signature Σ and
 collection of Σ-structures \mathcal{K} closed
 under isomorphism and $\mathcal{K} \subseteq C$,
 Φ is definable in L.

Connectivity over ordered graphs in logic
\mathcal{L}_o-expressible.

Definition: Let $\psi(R, \overline{x})$ where
R is s-ary relation and $\overline{x} = \overline{x}_1, \ldots, \overline{x}_s$ and
ψ is $\Sigma \cup \exists R \Sigma$-formula.

For any Σ-structure A, ψ defines

$F_{\psi} : 2^{\Sigma(A)^s} \rightarrow 2^{\Sigma(A)^s}$

$F_{\psi}(\overline{T}) = \{ \overline{a} \mid A \models \psi[R \mapsto T, \overline{x} \mapsto \overline{a}] \}$

Example: $C = \{ E \}$

$\psi(R, x, y) = E(x, y) \lor (\exists z \ R(x, z) \land E(z, y))$

$L \subseteq C$ over ordered structures

- If φ over an ordered signature
 the problem $A \models \varphi \in C$.
- If any ordered signature Σ and
 collection of Σ-structures \mathcal{K} closed
 under isomorphism and $\mathcal{K} \subseteq C$,
 Φ is definable in L.
\[F_\psi(\emptyset) = 2 \{ (1,2), (2,3), (3,4) \} \]
\[F_\psi(E) = \{ (1,2), (2,3), (3,4), (1,3), (2,4) \} \]

Fixed Point Suppose \(F_\psi : 2^u \xrightarrow{\text{u}} 2^u \) is a fixpoint of \(F_\psi \) if
\[F_\psi(T) = T. \]

\[F_\psi(\emptyset, \{ (1,2), (1,3), (1,4), (2,3), (2,4), (3,4) \}) \]
\[= \emptyset, \{ (1,2), (1,3), (1,4), (2,3), (2,4), (3,4) \} \]

Least fixpoint \(F_\psi : 2^u \xrightarrow{\text{u}} 2^u \)

\(T \) is LFP if \(T \) is fixpoint and for any other fixpoint \(R \), we have
\[T \subseteq R. \]

Tarski–Knaster Theorem If \(\psi(\emptyset, x) \)
\[\exists x \, R^x \] formulas such that all atomic subformulas involving \(R \) are under an even number of negations,
then \(F_\psi \) has a least fixed point.
First Order Logic with LFP.

- If $\psi(R,\bar{x})$ is a formula such that R appears under an even number of negations, then
 $$\text{LFP } R\bar{x} \psi(Cy)$$
is a formula.

 Meaning $A \models \text{LFP } R\bar{x} \psi(Cy) [Cy \mapsto \bar{a}]$

 if \bar{a} is least fixpoint of F_{ψ}

Immerman-Vardi Theorem: Over ordered structures $F_0 + \text{LFP}$ captures \mathcal{P}.