Descriptive Complexity

Shrenfencht's Theorem The following are equivalent statements (a) toz every formula (p(x,...xs) s.t gp(q) Em AFQ[zitrai] if BFG[zitrbi] (b) B F Q [x; +> bi] Scott Hintikka (c) D wins The m-round game Gm (D, ā, B, b) Définition let 2 le some signature and Kio a collection of (finite) 2-structures K is definable if there is c-pentence of such that K = ZX/XF93. Theorem Let & be a set of C-structures. Kis definable if IMEN s.t. HA, B. YNEMB then NEK & BEK. Yq. gr(qp)≤m. J}q ↔ B=q. let m = gr(Q). Let $\mathcal{A} \equiv_m \mathcal{B}$ JEK = JEY = BEY = BEK. 1217m c.t. H. X=mB NEKH BEK.

 $\varphi = \bigvee_{m} \varphi_{m}^{M}$ Suppose BEQ => JUEK BEQ BEMA BEK Suppose BEK => BEQ $\varphi_{m}^{oo} \neq \varphi$ ⇒ B≠q. Ordered Signature Co = 2<3. Ordered Structure &- structure. Proposition Let Even = EN / (n(A)) is even }. Even is not defenable. 1200 Gurevich's Theorem For any ordered A, B $(u(A)) \ge 2^m$ and $[u(B)] \ge 2^m$. Then \mathcal{D} wins Gm (A, B). For any $m \cdot |u(A)| = 2^m \quad ad |u(B)| = 2^m + 1$ $\mathcal{X} \equiv_{\mathsf{m}} \mathcal{B}$ Bat NEEven and B&Even. Ordered Grophs C= E<, E3. Ordered Graphs are Tog - structuris

Connected Graphs. For every pair of vertices u, v there is a path from uto v. Theorem Over ordered graphs connectivity is not definable. 1e. Connected = EN/Nis Tog-structures ouch that Dis connected F. Connected is not définable. 00000 Connected last (n) = $\forall y ? (x < y)$ Second (a) = ∀y. (y < n) → first(y) Contradiction. Descriptive Complexity Logic to capture a complexity class. L'captures C. H SAJAFQZER (as thet is a

-

Terms -
$$\alpha \in \mathcal{V}$$
, $\chi^{k} \in \mathcal{V}_{2}$.
- $c \in \mathbb{C}$
- f is k-ary function, and $t_{1} \cdot t_{k}$
are terms then $f(t_{1} \cdot t_{k})$ is term
Formulas - t_{1}, t_{2} terms , $t_{1} = t_{2}$
- $t_{1} \cdot t_{k}$ terms $\mathcal{R}(t_{1} \cdot t_{k})$
- $t_{1}, \cdot t_{k}$ terms $\mathcal{R}(t_{1} \cdot t_{k})$
- $t_{1}, \cdot t_{k}$ terms $\chi^{k} \in \mathcal{V}_{2}$, $\chi^{k}(t_{1} \cdot t_{k})$
- q is formula then $\mathcal{V}q$ is formula
- q, ψ are formulas then $q \vee q_{4}$
- q is formula , $\alpha \in \mathcal{V}_{1}$ then
 $\exists n \cdot q$
- q is formula $\chi^{k} \in \mathcal{V}_{2}$ then
 $\exists x \cdot q$
"there is a k-ary celetion $\chi_{-r} \cdot t \cdot q$
holds"
Sementics
Assignments $\alpha = (\alpha_{1}, \alpha_{2})$ be Λ .
 $\alpha_{1}: \mathcal{V}_{1} \to u(\mathcal{A})$ return $(\mathcal{A})^{k}$.

AFXKt...th [X] #

/ L、

 $(\alpha, (t_1) \ldots \alpha, (t_k)) \in \alpha_2(X^{\kappa})$ t.≥ ^A(R) u ⊇ Z F Jy [x] ψ XE J K $\mathcal{A} \models \mathcal{C} [x^* \mapsto S]$. Existential Second Order Logic Formulas of the form. JX, JX2 .. JXm Y where Y is first order. Ergin's Theorem Exidential Second order Logic capture NP. - V C-sentence Q is Ex SO ZALAFQZ is in NP - I collection of T-structure KENP there is an ex. So q s.t $K = \{ \mathcal{A} \mid \mathcal{A} \models \varphi \}.$