Incompleteness Theorem

Gödel's Incompleteness Theorem Any sound proof system for Th $(x, 0,1,+, x,<)$ is incomplete $1 . e . ~ I$ sentences φ s.t.

$$
(\mathbb{N}, 0,1,+, x, c) \neq \varphi
$$

and φ does not have a proof.
Gödel's (Alternate) Incompleteness Theorem Th $(\mathbb{N}, 0,1,+, x,<)$ is not recarieively enumerable.

Prob $H P=\{\langle M, w\rangle / M$ hello on $w\}$ $\overline{H P}=\{\langle M, w\rangle \mid M$ doen't halt on $w\}$ is not recursively enumerable.
To show $\overline{H P} \leq_{m}$ Th $(\mathbb{N}, 0,1,+, x,<)$
Given $\langle M, w\rangle$, we construct sentence
Not Halt $\langle M, w\rangle$ sit.
$\langle M, w\rangle \in \overline{H P}$ if Not Halt $t_{\langle m, w\rangle} \in$

$$
\overline{T h}(\mathbb{N}, 0,1,+, x,<)
$$

Without loos of generality, assume

- M is TM with only one read/write
lope. I these are no work-lopes and no special input Tape.)
- Configuration

$$
\begin{aligned}
& \text { onfuguraluon } \\
& \perp a_{1} a_{2}\left[\begin{array}{l}
v \\
a_{3} \\
q
\end{array}\right] \ldots a_{k} \sqcup \amalg \omega \ldots .
\end{aligned}
$$

is string in $T^{*}(T \times Q) \Gamma^{*}$ where T is Tape alphabet of M.

- enc: $T \cup(T \times Q) \rightarrow\{0,1 \ldots p-1\}$ encodes symbols as numbers, where p is prime number.
- λ Computation of M.

Configurations as number written ont in base p.
Computions are also number written outs in base p.

- Parameters
P - The number used to encode symbols.
c - length of one configuration
(in baling computation)
d - length of entire computation as string.

Not Halt - There is no halting compoataino
Halt Comp (v) - Variable r encodes a halting computation of m on w.

- Forest unfiguration is iancial cirfig.
- Successive config follow the Travisition funchim of M
- At same point M is in hath state.

Number - view as in pase p
Anxilhiary Formulas

- For $k \in \mathbb{N}, \quad k=\underbrace{1+1+1+\cdots+1}_{k}$
- Divides $(x, y)=\exists m \quad y=x \times m$
- Primo $(x)=((2<x) \vee(2=x)) \wedge$

$$
\begin{gathered}
\forall_{z}(\operatorname{Divides}(z, x) \rightarrow((z=1) v \\
(z=x))) \\
-\operatorname{Power}_{p}(x)=\left(f_{z}(\operatorname{Dinides}(z, x) \wedge \text { Prime }(z))\right. \\
\rightarrow(z=P))
\end{gathered}
$$

$$
\begin{gathered}
a_{0} a_{1} a_{2} \cdots a_{k} \cdots \\
\text { } \cdots \text { git at "position } p^{2 \prime \prime}
\end{gathered}
$$

- Symbol (v,y, a "the synubsiol at y in

$$
\begin{aligned}
& =\exists r \cdot \exists u \\
& (v=u \times y \times p+\underline{a} x y+r) \wedge(r<y)
\end{aligned}
$$

Start $(v, c)=$ "Fiat e digits of v encodes starling configuration." prover p length of one config.
Assume initial configuration $a_{0}, a_{1}, a_{2} . a_{n} \omega^{c-n}$

$$
\begin{aligned}
\text { Start }(v, c)=\forall y & {\left[y<n \rightarrow \operatorname{Symbol}\left(v, y, a_{y}\right)\right] } \\
& \wedge[(\underline{n}<y+1 \wedge y<c) \rightarrow
\end{aligned}
$$

$$
\text { Symbol }(v, y, L)]
$$

Suppress $H=T \times\left\{q_{a c c}, q_{r e j}\right\}$

$$
\operatorname{Halt}(v, d)_{\downarrow \downarrow \downarrow}=\exists g(y<d) \wedge\left(\bigvee_{a \in H} \operatorname{Symbsl}(v, y, a)\right)
$$

Config, $\underbrace{a_{0} a_{1} a_{2}}_{2 l} \cdots \frac{a_{c}}{\lambda l}$
Config2 $b_{0} b_{1} \ldots b_{c}$
$M_{0 v}=\left\{\left(a_{0}, a_{1}, a_{2}, b\right) \mid\right.$ symbol b is the content of some cell if a_{0}, a_{1}, a_{2} were the contents in che previous

Time step. \} ~

$$
\begin{aligned}
& \operatorname{Valid} \operatorname{Mour}(v, c, d) \\
& =\forall y((y \times c<d) \rightarrow \\
& \left(V \operatorname{Symbel}\left(v, y_{1}, \underline{a}_{0}\right) \wedge \operatorname{Symbol}\left(v, y \underline{p}, \underline{a}_{1}\right) \wedge\right. \\
& \left(a_{0}, a_{1}, a_{2}, b\right) \in \text { nov } \operatorname{Symbol}\left(v, y p p, a_{2}\right) \wedge \\
& \text { Syprool (} v, v \times \times p, \underline{b}) \text {) }
\end{aligned}
$$

Halt $\operatorname{Comp}(v)=\exists c \exists d \quad$ power $_{p}(c) \wedge$ power er $_{p}(d)$
$\wedge \operatorname{start}(v, c) \wedge \operatorname{Halt}(v, d) \wedge$
Valid Move (v, c, d)
Not Halt $=\forall v>H$ Halt $\operatorname{cominf}(v)$
Completeness Theorem If T is recursively enumerable then $T(T)$ is recursively enumerable.
Corollary If $\pi(T)$ is complete then $\overline{T h}(T)$ is decidable.

Axiomatrzation of
A) Recut of sentences that characterizes Th $(\mathbb{N}, 0,1,+, x,<)$.

1. then. a sorivisinse ar connatusation
of N ?
No.
Peano's Axcims
