Completeness Theorem

Define a proof system.

$$
T F \varphi
$$

Completeness Theorem $\Gamma \vDash \varphi$ if $T \vdash \varphi$ If $\Pi \vDash \varphi$ then there exits a prof of φ from r

- Typically you mechanical check of a prof is correct recusoively enumerable Completers Theorem Given $\mid T$ and φ, the problem of deterring if $T F \varphi$ is Kecurocicly enumerable.
Proof Outline
$T \not F \varphi$ if $T \cup\{7 \varphi\}$ is unsatigtrable

1. For any set of sentences T we can construct a set Δ of univiverooilly quantified sentences such that pe T is satisfiable if Δ is eatrofiable
2. Herbrand's theorem

Ground
Term Every constant in C is Term

For Cerms $t_{1} \ldots t_{k}$ and k-ary function symbol f,
$f\left(t_{1} \ldots t_{k}\right)$ is torm.
Ground ground
Formulas of t_{1}, t_{2} are k termo thin $t_{1}=t_{2}$ is (atomic) formule If $f_{1} \ldots t_{k}$ areltermo \& R is k-ary relotion then $R\left(t_{1} \ldots t_{k}\right)$ is fanl If $\varphi \& \psi$ are formmlas them $\varphi \vee \psi$ is foremma
If φ is formmbor ther $\tau \varphi$ is iff If φ is firmmla ξx is variable ther $\exists_{x} \varphi$ is wff.
Let P be a set of univisally grantifued sentences. quantifies-frer

$$
\Pi^{*}=\left\{\psi\left[x_{i} \mapsto t_{i}\right] / \forall x_{1} \ldots \forall_{c_{k}} \psi \in \Pi\right.
$$

$t_{1} \ldots t_{k}$ are ground loims $\}$
Set of quantfier free ground formmlas.
T is satrofiable iff T^{*} is satiofiable. (a ail of, of ground wffs)
3. Grsound" Compoctress therem I"ג is unsatingiable if \exists a finite subsect $\Gamma_{0} \subseteq T$ sach that $?_{0}$ is unsatiofiable.
4. Given a finutentfier - free set of formulas P, delerming if T is satagiable io decidable. \leftarrow Proved on October 7.
Algoithm for deterning $T \vDash \varphi$. (P is r.e)
Defintion \& R.E: L is r.e. of there is a TM that ourputs all the etingss in L If R is r.e then the equintatigizible pot of univarsal sentences Δ is aloo r.e. (Assume τ is finte)

1. $\Sigma=\varnothing, d=0$
2. Repeat frever
3. Enemerate the next sentence in Δ

$$
\varphi \cdot \Sigma=\mathcal{E} \cup\{\varphi\}
$$

4. $d++$
S. $T=$ Set of all ground termo of depth $\leq d$.
5. Construct the set \sum^{π} obtained by eubslititis every varioble by same term in $T_{\text {in }}$ foramlas in Σ.
6. Determine of Σ^{*} is satariable
7. If Σ^{*} is unsatrifiable then reeturn unsat
If P is unsat $\Rightarrow \Delta$ is unsat
$\Rightarrow \exists$ fointe subsat of Δ ustantrated with ground termo- Thast is unsat
\Rightarrow \exists same set Σ^{*} in my enmoeratim that is unsat.

Constructing an equisatrofiable set of universally graniffied sentences.
Conaider a sentence

$$
\forall x\left(\left(\partial_{x} P(x)\right) \vee \neg\left(\neg\left(\partial_{x} \theta_{x}\right) \vee R(x)\right)\right.
$$

Prenex Normal Form A formmla φ is in prevex pormal form if it is of the form $Q_{1}, Q_{x} \ldots \ldots Q_{b} x_{b} \psi$ whure
each $Q_{i} \in\{\exists, \forall\}$ and ψ is quamifiurizer

$$
\forall x \exists y \exists 2(P(y) \vee(Q(z) \wedge R(x)))
$$

premix.
Converting to premex normal form

1. Push negations to atomic formulas $\forall x(\partial x P(x)) \vee \sim\left(\sim\left(\partial_{x} Q(x)\right) \vee R(x)\right)$

$$
\equiv \forall x\left(\left(F_{x} P(x)\right) \vee((\exists x Q(x)) \wedge \neg R(x))\right.
$$

2. Rename bound variable to enause that each bound variable is distinct e

$$
\begin{aligned}
& \forall x((\exists a P(x)) V((\exists a Q(x)) \lambda \tau R(x)) \\
& \equiv \forall x((\exists y P(y)) V((\exists z Q(z \prime)) \wedge \tau R(x))
\end{aligned}
$$

3. Pall all the quantifiers to the font maintaining the same order.

$$
\begin{aligned}
& \forall x(\exists y P(y)) \vee((\exists z Q(z)) \wedge r R(x)) \\
\equiv & \forall x \forall y \exists z \quad P(y) \vee(Q(z) \wedge \sim R(x))
\end{aligned}
$$

Skolemizathion over the signature τ Consider $\forall x_{1} \forall x_{2} \ldots \forall x_{k} \forall y \quad \psi\left(x_{1}, \ldots x_{k}, y\right)$ For every value given to $x_{1} \ldots x_{k}$, there is a value for y s.t ψ holds.

Consider new formula $\tau \cup\{f\} f \notin \tau$.

$$
\forall x_{1} \forall x_{2} \ldots \forall x_{k} \psi\left[y \mapsto f\left(x_{1} \ldots x_{k}\right)\right]
$$

\longrightarrow no y.
Claim $\forall x_{1} \ldots \forall e_{k} \exists_{y} \psi$ is sat ifs

$$
\begin{aligned}
& \forall x_{1} \ldots \forall x_{k} \psi\left[y \mapsto f\left(x_{1} \ldots x_{N}\right]\right] \text { is sat. } \\
& A \in=\frac{\forall x_{1}, \forall x_{k} \forall y \psi[\alpha]}{\mathcal{A}^{\prime}=}\left(A_{,} f: \cos s\right. \text { ponds to sat formula) } \\
& \forall x \forall y \exists z(P(y) \vee(Q(z) \wedge \neg R(x))) \\
& \forall x P(g(x)) \vee(Q(h(z)) \wedge \neg R(x))
\end{aligned}
$$

