Quantifier Elimination: Linear Arithmetic

Definition A theory T admisto quantifier elimination if for every formula $\varphi(\vec{x})$, there is quantifier - free formula $\varphi^{\prime}(\vec{x})$ such that

$$
T \vDash\left(\varphi \rightarrow \varphi^{\prime}\right) \wedge\left(\varphi^{\prime} \rightarrow \varphi\right)
$$

Proposition If every formula of the form $\exists x \alpha_{1} \wedge \alpha_{2} \ldots \wedge \alpha_{k}$ (where α_{i} is a a mineral) is equivalent to a quantifier - free formula with respect to theory 7 , then T admits quantifier elimination.

Linear Arathmetic Th $((\mathbb{R}, 0,1,+,<))$ admits quaninfier elimination.

Ternary relation: $+(x, y, z)$ if z is the sum of x and y.

$$
\begin{aligned}
& \forall x(0<x \rightarrow 1<x+y) \\
& \equiv \forall x \forall z(0<x \rightarrow(+(x, y, z) \rightarrow 1<z))
\end{aligned}
$$

Fourier - Motzkin

$$
\exists_{n} \sim 1 \sim
$$

$\checkmark \pi w_{1} \operatorname{vo} n_{2} \ldots u_{k}$ worse α_{i} w uleral.
Atomic $s<t, s=t$, s, t are expression o

$$
\begin{aligned}
& \neg(s<t) \equiv(s=t) \vee(t<s) \\
& \neg(s=t) \equiv(s<t) \vee(t<s)
\end{aligned}
$$

Goal Eliminate quantifier from
$\exists x \beta_{1} \wedge \beta_{2} \ldots \beta_{k}$ whose β_{i} is atomise
Step) "Solve for x "
Transform each β_{i} into $x<t$

$$
\text { or } t<x
$$

where x dos not appear in t.
$t=\sum a_{i} y_{i}$ where a_{i} are rational
Example $\begin{aligned} \frac{1}{2} x+3 y & <2 x+\frac{1}{3} y \\ 3 x+9 y & <4 x+2 y\end{aligned}$ numbers.

$$
\begin{aligned}
& x+x+x+y+\cdots y<x+x+x+x+y+y \\
& \exists x \bigwedge_{l \in L} l<x \bigwedge_{e \in E} x=e \cap \bigwedge_{u \in U} x<u
\end{aligned}
$$

Step 2
Case 1: $E \neq \varnothing$

$$
\exists x \quad x=t \wedge \psi \equiv \psi[x \mapsto t]
$$

Case 2: $E=\varnothing$

$$
\exists x \wedge_{l \in L} l<x \wedge \bigwedge_{u \in u} x<u \equiv \bigwedge_{n \in 1} \bigwedge_{n \in 11} l<u
$$

$\exists x \varphi(x, \vec{y})$

- Transform V $\exists \beta_{1} \wedge \ldots \beta_{k}$ where β_{i} is atomic.
Involves converting into DNF Can we avoid?
Ferrante - Rack off

$$
\exists x \varphi(x, \vec{y})
$$

- Push negation o inside in φ resulting in
$\exists x \psi(x, \vec{y})$ where
ψ is a positive Boolean combination of
- Eliminating negation we get. $\exists x \eta(x, \vec{y})$ where
η is poithive boolean cob. of atomic finds.
- For each atomic formula, we solve for x.
$\exists x+v e$ Boolean comb $(x<t, x=t, t<x)$ Imagine values are assigned to all vorisobbles other - Chan x. , midpoint
$\exists x F$ whare F is a tre Boblean combination of conotrainto $x<t, x=t$ $t<x$.

$$
\begin{aligned}
& F_{-\infty} \equiv F[x<t \mapsto T, x=t \mapsto \perp, t<x \mapsto \perp] \\
& F_{+\infty} \equiv F[x<t \mapsto \perp, x=t \mapsto 1, t<x \mapsto T] \\
& \text { For } x \Delta_{1} t_{1}, x \otimes_{2} t_{2} \in F \quad\left[\Delta_{1}, 凶_{2} \in\{<,=,>\}\right] \\
& F_{t_{1} t_{2}} \equiv F\left[x \mapsto \frac{t_{1}+t_{2}}{2}\right] \\
& \exists x F \equiv F_{-\infty} \cup F_{+\infty} \bigvee_{\substack{x \infty, t, t \\
x \infty_{2}, t_{2} \\
\in \in f}} F_{t_{1, t}}
\end{aligned}
$$

Example $\forall x \quad 0<x \rightarrow 1<x+y$
Quantifier free equivalat formila is $1<y \vee 1=y$

$$
\begin{aligned}
& \varphi \equiv \neg \exists x \quad 0<x \wedge \neg(1<x+y) \\
& \equiv 7 \exists_{x} \quad 0<x \wedge(1=x+y \vee x+y<1) \\
& \exists x \psi . \\
& \exists x \psi \equiv \exists x \quad 0<x \wedge(x=1-y \vee x<1-y) \\
& F_{-\infty} \equiv \perp \wedge(\perp \vee T) \equiv 1 \\
& F_{+\infty} \equiv T \wedge(1 \vee \perp) \equiv 1 \\
& t_{1-1} \equiv 0,1-y, \frac{1-y .}{-} .
\end{aligned}
$$

$$
\begin{aligned}
F_{0}^{2} & \equiv 0<0 \wedge(0=1-y \vee 0<1-y) \equiv 1 \\
F_{1-y} & \equiv 0<1-y \wedge(1-y=1-y \vee 1-y<1-y) \equiv y<1 \\
F_{\frac{1-y}{}}^{2} & \equiv 0<\frac{1-y}{2} \wedge\left(\frac{1-y}{2}=1-y \vee \frac{1-y<1-y)}{2}\right. \\
& \equiv y<1 \wedge(1-y=1-y+1-y \vee 1-y<1-y+1-y) \\
& \equiv y<1 \wedge(0=1-y \vee 0<1-y) \equiv y<1 \\
\exists x \psi & \equiv F_{-\infty} \vee F_{+\infty} \vee F_{0} \vee F_{1-y} \vee F_{\frac{1-y}{2}} \\
& \equiv \perp \vee \perp \vee \perp \vee y<1 \vee y<1 \equiv y<1 \\
\varphi & \equiv \neg \exists x \psi \\
& \equiv \neg(y<1) \equiv y=1 \vee 1<y .
\end{aligned}
$$

Th $((\mathbb{R}, 0,1,+,<))$ admito quanifier elimination.
Corollary $T h(\mathbb{R}, 0,1,+, c)$ is de cidable

$$
\operatorname{Th}(\mathbb{Q}, 0,1,+,<)=\pi(\mathbb{R}, 0,1,+,<)
$$

Tarski-Sedenberg Theorm Th $(\mathbb{R}, 0,1,+, x,<)$ admitto quanifier elimination and is decidable.

Th $(\mathbb{C}, 0,1,+, x, 2)$ admits quantifies elimination and is decidable.
Robinson $\operatorname{Th}(\mathbb{Q}, 0,1,+, x,<)$ is not recursively enumerable.
Gödel $\overline{\pi h}(\mathbb{N}, 0,1,+, x,<)$ is not recursively envanerable.

Preoborger $\operatorname{Th}(\mathbb{N}, 0,1,+,<)$ is decidable
Skolem Th ($\mathbb{N}, 0,1, x,<)$ is decidable

