Lower bounds on resolution proofs

Grains Interpolation Theorem if $A(\vec{p}, \vec{q}) \in B(\vec{q}, \vec{n})$ -Chen three is $C(\vec{q})$ such that $A(\vec{p}, \vec{q}) \neq C(\vec{q})$ and $C(\vec{q}) \neq B(\vec{q}, \vec{r})$
Circint A circint is a sequence of asaigamento $A_{1} A_{2} \ldots A_{n}$ where for any $i A_{i}$ is of the from

$$
\left.\begin{array}{ll}
P_{i}=\tau & P_{i}=P_{j} \cup P_{k} \\
P_{i}=F \\
P_{i}=? & P_{i}=P_{j} \wedge P_{k} \\
P_{i}=7 P_{j}
\end{array}\right\} j, k<i .
$$

Size of circint is \# assignments in the sequence.
P/poly A problem $A \in P /$ boll if there are c, k and $\left\{c_{i}\right\}_{i \in \mathbb{N}}$ such that $\left|c_{i}\right| \leq c n^{k}$, $\forall x . \quad x \in A$ ito $C_{l x \mid}(x)=T$
NP/ptly A problem $A \in N P /$ poly if the are c, k and $\left\{c_{i}\right\}_{i \in N}$ such that $\left|c_{n}\right| \leq c_{n}^{k} \sum_{1}$ $\forall x . x \in A$ if $\exists p \quad C_{|x|}(x, p)=T$ coNP/poly A problem $A \in$ coNP/poly if there are c, k and $\left\{C_{i}\right\}_{i \in \mathbb{N}}$ such that $\mid C_{n} \leq \leq n^{k} \xi$ $\forall x, x \in A$ if $\forall p C_{(x)}(x, p)=T$.
Mundici's Therm of for every A, B st
$A \neq B$ there io interpolant C whose cracone has size \leq poly ($|A|,|B|$) then

$$
P / p o l y=N P / \text { poly } n \operatorname{coNP} / p o l y \text {. }
$$

Proof Assume poly-pized interpolanto exist for all $A, B \quad A \neq B$. Will show that NP/poly a coNP/poly $\subseteq P$ /poly.
Let $L \in N P / p o l y$ coNP/porly.
Since $L \in N P / \neq l_{l}, \exists\left\{A_{k}(\vec{p}, \vec{q})\right\}$ s.t.

$$
\forall \vec{q} \cdot \vec{q} \in L \text { ff } \exists \vec{p} A_{|\vec{q}|}(\vec{p}, \vec{q})=T
$$

Since $L \in$ coN p/prly $\exists\left\{B_{k}(\vec{q}, \vec{r})\right\} p . t$ $\forall \vec{q} \quad \vec{q} \in L$ if $\forall \vec{r} \quad B_{\mid \vec{q}}(\vec{q}, \vec{r})=T$. $\forall k . \quad A_{k}(\vec{p}, \vec{q}) \neq B_{k}(\vec{q}, \vec{r})$
$\exists\left\{C_{k}\right\}_{k \in \mathbb{N}}$ sit. $\quad \operatorname{size}\left(C_{k}\right)=\operatorname{poly}\left(A_{k}, B_{k}\right)$ $=p s t y(k)$
$A_{k}(\vec{p}, \vec{q}) \neq C_{k}(\vec{q})$ and $C_{k}(\vec{q})=B_{k}(\vec{q}, \vec{n})$
$\left\{C_{k}\right\}$ solves L

$$
L \in P / p o g
$$

Theorem Suppress $T=\left\{A_{i}(\vec{p}, \vec{q})\right\}_{i=1}^{k} \cup\left\{B_{j}(\vec{q}, \vec{r})\right\}_{j=1}^{Q}$ and T has resolution refutation of length n. Thin there is an interpolant $C(\vec{q})$ such-chat circuit sine of C is $O(n)$.

Interpdant C s.t. $\bigwedge_{i=1}^{k} A_{i}(\vec{p}, \vec{q}) \neq C(\vec{q})$ and $C(\vec{q}) \wedge \bigcap_{j=1}^{l} B_{j}(\vec{q}, \vec{r})^{i=1}$ in unsatisfiable.
Monotone Cirint is a circint whee There are no assignments of the form $P_{i}=T P_{j}$.
Theorem Suppose $\Gamma=\left\{A_{i}(\vec{p}, \vec{q})\right\}_{i=1}^{k} \cup\left\{B_{j}(\vec{q}, \vec{r})\right\}_{j=1}^{l}$ and \vec{q} either appear only positively in $\left\{A_{i}\right\}$ or appears only negatively in $\left\{B_{j}\right\}$. has a resolution refutation of length n. Then there is an interpolant C such C has a monotone circint of size $O(n)$.

$$
P \subseteq P / p o l y
$$

Try to probe that $N P \neq P / p o l y$.
$\exists L \in N P$ s.t. circints solving L are exponential or super polynomial
Snceeded in proving that certain NP complete problems have exponential Cower bounds on monotone ivicint that solve them. k-color Given a graph $G=(V, E)$ determine if helen
Q is R - $\cos \sigma$ arrow
Proportion For any n, k. There is eat of chances $\operatorname{color}_{n, k}(\vec{q}, \vec{r})$ s.t. a graph G represented by on aosignneent $t o \vec{q}$ is k-colorable if color n,k is satignible. coloring is given the asergiment $t_{0} \vec{r}$.
Proof $q_{a r}-T$ if there is an edge (a, v)
$r_{n i}-T$ if there is coloring where vertus u gets color i.
(a) For every vertex n.

$$
r_{u_{1}} v r_{u_{2}} v \ldots v r_{u_{k}}
$$

(b) For every vertex $n \&$ color i, j ($i \neq j$)

$$
\neg r_{n_{i}} V \neg r_{n_{j}}
$$

(c) For every u, v and cor $i \quad(u \neq v$,

$$
\neg q_{u v} \vee \neg r_{u i} \vee \neg r_{v i}
$$

Clique A clique in $G=(V, E)$ is $c \subseteq V$ s.t. $\forall u, v \in C \quad(u \neq v) \quad(u, v) \in E$.
k. Clique Given graph G, determine if G has a clique of size k.
Proposition For every n, k there is as set of
 encoded bay \vec{q}, has a clique of size k th
clique $_{n, k}$ is satisfiable (neirgnment to \vec{P} gives the clique.)
Proof $q_{a v}=T$ if (n, v) is edge.
$P_{\text {in }}=T$ ifs i th vertex of clique io ar.
(a) For every $i, p_{i 1} V p_{i 2} \ldots V p_{i n}$
(b) For carey i, u, v $7 p_{i u} V>p i v \quad(n \neq k)$
(c) For every $i, j, n(i \neq j) \neg p_{i n} V \neg p_{j n}$
(d) For every $u, v, i, j \quad(n \neq v, i \neq j)$

$$
\begin{aligned}
& p_{i u} \wedge p_{j v} \rightarrow q_{u v} \\
& \neg p_{i u} \vee \neg p_{j v} \vee q_{u v}
\end{aligned}
$$

Proposition If a graph G has a chive of size k then G is not $(k-1)$-colorable. $\forall n, k$. Clique n,k U color $_{n, k-1}$ is unsatisfiable
Razboros, Alow- Bopanna Any monotone faintly circinto $\left\{C_{n}\right\}_{n \in \mathbb{N}}$ s.t. C_{n} evaluates to T on gropho (of size n) that have a k-clique and evaluates F on any graph that is not $k-1$ - colorable.
$\left|C_{n}\right|$ is at least $n^{\Omega(\sqrt{k})}$ for any $k \leq n^{1 / 4}$.

Thuorem Any resolution refulation of chique $_{n, k} U$ color$_{n, k-1}$ must have lengith at least $n^{\Omega(\sqrt{k})}\left(k \leq n^{1 / 4}\right)$.
Proof There is monotone interpolent of pize $O(m)$ for chique $n_{, k} U$ colorn $_{n} k-1$ where m is lengeth of the refotation.

$$
m \geq n^{\Omega(\sqrt{k})}
$$

Satrof a abitity is NP- complete Validity is coNP-complete.
Cook-Reckow Thu is proof syatem s.t. evrry tantology has a poly-sized feoob iff $N P=C_{0} N P$.
OL2en Question Frege proof sgstem io puper?

