Craig's interpolation theorem and proof complexity

Open Problems

- is $P=N P$?
- Is $P=N P \cap$ co NP?
* Problems in NP \cap co NP were later shown to G in P. Examples linear programming and primeatity.
* Some problems in NP 1 co NP not known to G in P.
- ls $N P=$ co NP?

Cook-Levin Theorem The satsofiabidity problem for propositional Logic is NP-complete.
Grollary The validity problem for propositional Logic is coNP-complet.
Proof Membership in co NP: Proof that a formula is not valid is a tenth assignment under which the formula evaluates to F.
Horchess If $A \leqslant_{p} B$ then $\bar{A} \leqslant_{p} \bar{B}$ $L \in \operatorname{coNP} . \quad \bar{L} \in N P$
Reduction f from L to Satiofinblity.
$x \in L \quad \Leftarrow f(x)$ is sand in-
$x \in L \leftrightarrow f(x)$ is unsathofiable $\leftrightarrow T f(x)$ is valid.

Definition A proof system is super if every tountology has a "short "(polynomindy) proof in the proof system
Cook-Reckow Theorem If there is a super proof system for propointional logic then $N P=\operatorname{coNP}$.

Notation List of propositions $p_{1} \cdots p_{n}$ denote by \vec{P} $A(\vec{p})$ to denote that ace $(A) \subseteq \vec{P}$.
Gang's Interpolation Theorem If $A(\vec{p}, \vec{q}) \vDash B(\vec{q}, \vec{r})$ then there a $C(\vec{q})$ such that

$$
\begin{aligned}
& A(\vec{p}, \vec{q}) F C(\vec{q}) \text { and } \\
& C(\vec{q}) \vDash B(\vec{q}, \vec{r})
\end{aligned}
$$

Proof For a fourth collation v, and \vec{q}

$$
V \Gamma_{\vec{q}}: \vec{q} \rightarrow\{T, F\}
$$

$M=\left\{\left.V\right|_{\vec{q}} \mid V \vDash A(\vec{p}, \vec{q})\right\} \leftarrow$ finite set.
Let $M_{k}=\left\{v_{1}, v_{2} \ldots v_{k}\right\}$ and $\vec{q}=\left\{q_{1} \ldots q_{m}\right\}$ $C=\bigcup_{i=1}^{k}\left(c_{1}^{i} \wedge c_{2}^{i} \ldots c \cdot c c_{m}^{i}\right)$ where

$$
c_{j}^{l}= \begin{cases}q_{j} & \text { of } \\ v_{i}\left(q_{j}\right)=1 \\ \tau q_{j} & \text { if } \\ v_{i}\left(q_{j}\right)=F\end{cases}
$$

$A \vDash C: \quad v \vDash A$ then $v l_{q} \in M$ and $v \vDash C$
$C F B$: Let v sit $v \nexists B$.
Let consider v^{\prime} s.t $\left.v\right|_{\vec{q}, \vec{r}}=\left.v^{\prime}\right|_{\vec{q}, \vec{r}}$.

$$
\begin{aligned}
& A \neq B \Rightarrow V \not \not A . \\
& V^{\prime} \notin B \Rightarrow V^{\prime} \not \not A A \\
& V \int_{\vec{q}} \notin M \Rightarrow V \neq C
\end{aligned}
$$

$\operatorname{Size}(c)=O\left(2^{m}\right)$
Open Question Are there polynomial sized interpolonto for "all formulas"?
Cricint I_{s} a sequence $L_{1}, L_{2} \ldots L_{n}$ s.t. each line L_{i} is ane of the following forms.

$$
\begin{array}{lll}
P_{i}=T & P_{i}=P_{j} \wedge P_{k} & j, k<i \\
P_{i}=F & P_{i}=P_{j} \vee P_{k} & j, k<i \\
P_{i}=? & P_{i}=7 P_{j} & j<i
\end{array}
$$

Singe of consent $=n$.
$\operatorname{inputo}(c)=\left\{P_{i} \mid \quad p_{i}=? \in C\right\}$
Given assignment to lapels (C), val (C) is just the value P_{n}.
Example

$$
\left.\begin{array}{l}
P_{1}=? \\
P_{2}=?
\end{array} \quad\right\} \quad p_{3} \wedge\left(p_{1}, p_{p_{2}}\right)
$$

$$
\begin{aligned}
& P_{3}=? \\
& P_{4}=P_{6} \wedge P_{2} \\
& P_{5}=P_{3} \vee P_{4}
\end{aligned}
$$

Defimtion Aproblem $A \in P /$ poly of there constanto l, k and $\left\{C_{i}\right\}_{i \in \mathbb{N}}$ s.t.
$\forall n \quad$ size $\left(c_{n}\right) \leq Q n^{k} \quad \mid$ inpurt $\left(c_{n}\right) \mid=n$.

$$
\forall x \quad x \in A \text { if } C_{|x|}(x)=T
$$

A problem $A \in N P /$ poly if there l, k and $\left\{c_{i}\right\}_{i \in \mathbb{N}}$ s.t.

$$
\begin{aligned}
& \forall n . \quad \operatorname{size}\left(C_{n}\right) \leq l_{n}^{k} \\
& \forall x . \quad x \in A \quad \nexists_{p} . C_{|x|}(x, p)=T
\end{aligned}
$$

A problem $A \in \operatorname{coNP} / p \delta l y$ if $\exists l, k$ and $\left\{c_{i}\right\}_{i \in \mathbb{N}}$ s.t $\forall n$. $\operatorname{size}\left(C_{n}\right) \leq \ln _{n}$
$\forall x \quad x \in A$ iff $\forall p . \quad C_{x 1}(x, p)=T$
open Problem?

$$
\text { P/poly } \stackrel{?}{=} \text { NP/poly } \cap \text { coNP/poly }
$$

Mundici Theotem of $\forall A, B$ s. $Z A \neq B$ there is an interfolant C whose circinct size is poly $(|A|,|B|$) then

$$
P / \text { poly }=N P / \text { poly } \cap \operatorname{coN} / \text { /poly. }
$$

Pirod P/boh $\subseteq N P /$ bow \cap coNP/bow

Let $L \in N P /$ poly 1 coNP/poly.
$\exists\left\{A_{i}(\vec{p}, \vec{q})\right\}_{i \in \mathbb{N}}$ and $\left\{B_{i}(\vec{q}, \vec{r})\right\}_{i \in \mathbb{N}}$

$$
\begin{aligned}
& \text { s.t. } \quad \forall \vec{q} \in L \quad \text { if } \exists \vec{p} A_{|\vec{q}|}(\vec{p}, \vec{q})=T \\
& \text { if } \forall \vec{r} B_{|\vec{q}|}(\vec{q}, \vec{r})=-
\end{aligned}
$$

